

© Coinspect 2024 1 / 18

Phase 1 Incremental Review
Source Code Audit

Version: v241030 Prepared for: Babylon October 2024

Security Assessment

1. Executive Summary
2. Summary of Findings

2.1 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions

5. Detailed Findings
BP1-013 - Unsafe confirmation depths allowed
BP1-014 - Attacker on finality's provider system can
observe passphrase
BP1-015 - Hardcoded DB credentials increase the risk
of leaking passwords

© Coinspect 2024 2 / 18

BP1-016 - Attacker can force usage of paid ordinals
API

6. Disclaimer

© Coinspect 2024 3 / 18

1. Executive Summary
In September 2024, Babylon Labs engaged Coinspect to perform a Source Code
Audit of changes made to the Phase 1 components of the Babylon mainnet. The
objective of the project was to evaluate the security of the changes in the
Babylon Phase 1 systems.

In October 2024, Coinspect presented the review's definitive report after
reviewing Babylon's team fixes for the issues described in the report.

Solved Caution Advised Resolution Pending

High
0

High
0

High
0

Medium
1

Medium
0

Medium
0

Low
1

Low
0

Low
0

No Risk
2

No Risk
0

No Risk
0

Total

4
Total

0
Total

0

BP1-016 describes how an attacker can force a Babylon Staking API operator to
lose funds by abusing a fallback mechanism in the Ordinals detection API. BP1-013,
BPI-014 and BPI-015 all describe possible improvements to the safety of the
system under specific scenarios, but are of low risk or informational value.

http://https//babylonlabs.io/
https://coinspect.com/

© Coinspect 2024 4 / 18

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.1 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

BP1-016 Attacker can force usage of paid ordinals API Medium

BP1-014 Attacker on finality's provider system can observe
passphrase Low

BP1-013 Unsafe confirmation depths allowed None

BP1-015 Hardcoded DB credentials increase the risk of leaking
passwords None

© Coinspect 2024 5 / 18

3. Scope
The engagement was set to last for 10 days and involved the changes made by
the Babylon team since Coinspect's last review to 12 repositories, all related to
Phase 1 functionality:

1. https://github.com/babylonlabs-io/babylon at commit
009cd29a425d85faf8f6dae0a6ecf4e375aa8211 (last reviewed:
add420f074751cf53edea5b7a55cca3d34291f5b)

2. https://github.com/babylonlabs-io/btc-staker at commit
4530202f31d3b86a4d4742b294a6d05933db5245 (last reviewed:
f22ee2fbd207b29fa428f12a228d46819565306a)

3. https://github.com/babylonlabs-io/btc-staking-ts at commit
e9438565f32267a54fc2033ab87ba69aa43ac474 (last reviewed:
6494df2b9f2c7a80578356659b1d24302e69dda2)

4. https://github.com/babylonlabs-io/cli-tools at commit
a3c8cd5ccfbd1ef72bc4fc553e50461fbd9b47cb (last reviewed:
d3921efd97bed74dbe9a3b8b578ab320e3460a52)

5. https://github.com/babylonlabs-io/covenant-signer at commit
878bbfed57cca1d97aad019f536543207b900b52 (last reviewed:
91e4744bbe0bb440344354e380959d8126d9b82b)

6. https://github.com/babylonlabs-io/finality-provider at commit
fdc18c897d539c687fa141ab5c21614fe981db58 (last reviewed:
dbfe3632bb213560af71e0323a45bbccc1d66000)

7. https://github.com/babylonlabs-io/networks at commit
023355a0ee7ce2bf006b972458870e22fd9704f2 (last reviewed: -)

8. https://github.com/babylonlabs-io/simple-staking at commit
2c2c1a8289873819e473e2ec44cea8c44b7f8cb1 (last reviewed:
9040c942d0b811e880d284a69d8abbca0572614f)

9. https://github.com/babylonlabs-io/staking-api-service at commit
6c111f360dcf5afb790e5a1d1685680a06966c46 (last reviewed:
4e6033a0860df23400611bad24ec72934545f374)

10. https://github.com/babylonlabs-io/staking-expiry-checker at commit
0311e3adf58110a6ea0505582918ac8321aaa5b6 (last reviewed:
c04e2af4b38e363554b4a4b28485d484b837dbe3)

11. https://github.com/babylonlabs-io/staking-indexer at commit
ce502f5506e7fefc2aa449a10e56b98b70cb5436 (last reviewed:
c13b4f0dd1a57f5f327e5fee613bd41e1b923062)

12. https://github.com/babylonlabs-io/staking-queue-client at commit
6b9bb1d59a7d6c5c19ab534f705cd7a5d61ebf91 (last reviewed:
3f07eacc102a7ea9861689a4028c825d4a67e854)

Some repositories had further constraints:

https://www.coinspect.com/blog/babylon-phase-1/

© Coinspect 2024 6 / 18

1. babylon repository had only its btcstaking package in scope
2. createStakingTxCmd, createUnbondingTxCmd and createWithdrawTxCmd are

considered test commands and as such out of scope for cli-tools
repository.

3. btc-staker repository had only the cmd/stakercli/transaction command in
scope

4. finality-provider repository had only the commands eotsd init, eotsd keys
add, eotsd sign-schnorr and eotsd verify-schnorr-sig of the eotsmanager in
scope.

5. networks repository only had its parameters directory in scope

© Coinspect 2024 7 / 18

4. Assessment
The Babylon Phase 1 protocol is a set of systems designed to allow stakers to
safely and easily lock their coins into a Bitcoin script that ensures that the account
cannot be slashed except under certain slashable conditions. During Phase 1, it
should be impossible for slashing to occur, as it is impossible for slashing to
happen while there is no Babylon chain active. Another condition of the Babylon
Phase 1 protocol is that stakers should be able to, at will, unlock their stake and
receive it back after some parametrized unbonding time.

Coinspect has already performed a review of the systems involved for Phase 1.
The threat model in this review is then, essentially, the same. The most prominent
risks in scope are, in a rough order of potential severity:

1. Problems related to the locking-scripts which would allow an adversary to
steal coins from stakers

2. Problems related to the locking-scripts which would prevent the staker from
unbonding

3. Problems in the covenant committee servers which allow an adversary to
interrupt the covenant-signing process

4. Problems in the frontend or CLI UIs which can make stakers make wrong or
unsafe decisions

It is important to note the operational risks such as covenant committee private
key safety, frontend delivery and other supply-chain risks are not insignificant; but
cannot be covered by a source code review. Another risk that needs to be
highlighted is the wallet's responsibility to protect the user's signature, private key
and their interactions with potentially adversarial websites. The user-facing
application in no way handles the user's private keys, that is the wallet's
responsibility.

There are two exceptions in the repository list: one is the networks repository;
which has not been reviewed before. It is nevertheless a very small script with an
extremely narrow threat model, as it only contains a parser for the configuration
of the chain. While bugs could be present here, they would be apparent
immediately. Furthermore, it would be impossible for an attacker to leverage this
repository for an attack, except as part of a supply chain attack. This repository
was reviewed for conformity with the specification provided in the README.md file
of the bbn1/parameters directory.

The other exception is the finality-provider repository, which was not reviewed
by Coinspect together with the rest of the Phase 1 components, but it was
reviewed as part of another previous engagement. The logic in scope for this
review includes only a few commands related to One-Time Extractable Signatures,

https://babylonlabs.io/blog/babylon-s-bitcoin-staking-contract
https://www.coinspect.com/blog/babylon-phase-1/
https://docs.babylonchain.io/docs/user-guides/btc-staking-testnet/finality-providers/eots-manager

© Coinspect 2024 8 / 18

The threat model for this repository includes best practices around key
management, as well as the correctness and safety of the signatures and the
verification of them; assuming the underlying cryptographic primitives work
correctly. The underlying cryptographic protocol was not in scope for this review.

It is worth highlighting that among the changes reviewed are those made to
support Cactus Wallet. While reviewers analyzed Babylon integration-code, it was
impossible to perform dynamic tests to check how the wallet behaved as the
wallet is not open to users and needs a corporate account before any interactions
with it are permitted. In any case, the specific wallet operation is outside the
scope of this audit and the Assumptions section notes that it was assumed that
wallet software protects the user's signatures and private keys.

Another feature introduced in the changes is the attempt to detect and prevent
UTXOs containing ordinals from being used. While the feature is well-documented
as a best effort and thus potential issues with correctness not made a priority,
Coinspect found a way in which one could abuse the fallback API to cost funds to
operators of the API, described in BP1-016.

4.1 Security assumptions

During the review, Coinspect made several assumptions. The exact same
assumptions were needed for Coinspect's previous review:

1. The Bitcoin network is safe and live.
2. A majority of covenant emulation committee members are online and

respond to signing requests in a timely manner.
3. The provider that hosts the frontend and API components of the web

applications is trusted by the user.
4. The wallet providers correctly protect the user's signature and private key

and don't modify the user's transaction.
5. The provider that hosts the components connects the indexer to a Bitcoin

node that reports the actual mainchain data.
6. The confirmation_depth parameter is bigger or equal than six and the

covenant emulation committee has more than a single member.

https://docs.babylonchain.io/docs/user-guides/btc-staking-testnet/finality-providers/eots-manager

© Coinspect 2024 9 / 18

5. Detailed Findings

BP1-013
Unsafe confirmation depths allowed

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

networks/parameters/parser/ParamsParser.go

Description

The parameters specification and implementation allow the ConfirmationDepth
to be arbitrarily small as long as it is positive. Restricting it to safe values of
six or more can remove an assumption (see Assumptions) item from the
security reviews, as the safe values would become an software-enforced
invariant of the system.

© Coinspect 2024 10 / 18

Recommendation

Restrict the ConfirmationDepth to safe values.

Status

The Babylon team chose to allow potentially unsafe values as it aids
development and testing. This poses no risk as long as care is taken so that
the ConfirmationDepth is not unsafe in production-ready configurations.

© Coinspect 2024 11 / 18

BP1-014
Attacker on finality's provider system can
observe passphrase

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

finality-provider/eotsmanager/cmd/eotsd/daemon/keys.go

btc-staker/cmd/stakercli/main.go

Description

An attacker positioned on the finality's provider system but without
permissions to read the finality's provider configuration or interact with the
finality provider system itself can still observe the passphrase used to encrypt
and decrypt the Schnorr keys.

This is because the eotsd add and eotsd sign-schnorr commands accept the -
passphrase argument via the command line, making it visible for other users
via the ps command. The /proc/PID directory from which the ps command
reads is readable by all users by default.

The same problem is present in the btc-staker repository but for the Bitcoin
RPC password.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0499680a42141d86417a8fbaa8c8db806bea1201

© Coinspect 2024 12 / 18

Note that this also leaks the passphrases to the user's .bash_history or
equivalent depending on their shell by default.

Recommendation

Provide sensitive data to the system via an interactive prompt, like the sudo
command.

Status

Fixed for finality-provider repository on commit
5118dc565a6c547c29bd7aa45a75919916ae4875. The eotsd add and eotsd sign-
schnorr commands now use Cosmo's key management.

The btc-staker repository got the flags removed in commit
4a74320e143a5a8cfeb405ee16fb8d89f2779d09.

© Coinspect 2024 13 / 18

BP1-015
Hardcoded DB credentials increase the risk
of leaking passwords

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

cli-tools/bin/init-mongo.sh

staking-api-service/bin/init-mongo.sh

staking-expiry-checker/bin/init-mongo.sh

Description

Hardcoded credentials in the init-mogo.sh script increase the risk of leaking
them to untrusted third parties and complicate rotating them in case it is
needed. The init-mongos.sh script can be found in the cli-tools, staking-api-
service and expiry-checker repository.

It is worth highlighting that no credentials were leaked to reviewers, as the
scripts had placeholder credentials (password: example). Nevertheless, the
script was not prepared to read credentials from secure locations.

© Coinspect 2024 14 / 18

Recommendation

Store credentials in environmental variables and prepare the scripts to read
from them. When possible, use credentials manager services such as AWS
Secrets Manager to be able to generate, track and rotate credentials.

Status

This issue was considered low risk originally, but the Babylon team stated that
these scripts were only used in development and testing. This makes the issue
pose no real risk to the system.

https://aws.amazon.com/secrets-manager/

© Coinspect 2024 15 / 18

BP1-016
Attacker can force usage of paid ordinals
API

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

staking-api-service/internal/clients/ordinals/ordinals.go

Description

An attacker can force the spending of operator's funds and possibly deny-
service to the ordinal-checking service by forcing requests to the free-
ordinals API to fail, making the system use the pay-to-use fallback option.

To understand the issue, consider that among the changes relevant in the
system for this review is a new system that attempts (on a best-effort basis)
to detect UTXO that contains ordinals and avoid using them for staking
purposes.

To do this, the staking-api-service now implements an HTTP Client (see
base_client.go) and performs two requests to two different services in the
worst case scenario: the first one to a ordinal server, and if that one fails, to a
Unisat API. The ordinal server is expected to be run by the operator, while the
Unisat (or any other fallback) is expected to be a paid API.

https://github.com/ordinals/ord
https://unisat.io/

© Coinspect 2024 16 / 18

The issue is that an attacker can force failure on the free API to force the
system to go to the secondary, paid API. The attacker can do this by sending
a request for a transaction they know does not exist forcing a 404 to be
returned by the free API. They can also force a 500 by sending a non-existent
txid (see Proof of Concept section).

The impact varies depending on how the operator has paid for the Unisat
service. In the worst case scenario, the operator is using the Pay as you go
plan, making it possible for the attacker to spend an arbitrary amount of
operator's funds.

Note that while the staking-api-service recommends implementing some kind
of rate limit for the system, it does not implement any application-level limit,
making the issue easier to exploit.

Recommendation

Use the fallback API only when the request fails not due to user error, but
because the Ordinals server is offline. Because the ordinals API seems to
return 500 even when a more appropriate status would be 400 (as the user
provided a non-existent transactions), the best way to detect an unresponsive
Ordinals servers is just to check if the request failed due to the timeout. If the
request went through, assume the Ordinals API is working; and do not retry
with the paid API.

Alternatively, implement a specific rate-limit for the secondary API, make sure
to inform operators of this risk, discourage the use of the Pay as you go
Unisat pricing and warn about the potential misuse of the fallback option.

Status

Fixed in commit c76eadfc98771d30fb4b09ba87e563f4dac9e55e. The secondary,
paid-to-use API has been removed; rending this issue impossible to exploit.

Proof of concept

To confirm the issue, Coinspect leveraged an Ordinal Wallet API provided by
Babylon and made a simple Python script to showcase that an attacker can
send an arbitrary amount of requests to the server.

import requests
srv = "http://localhost:8092/"
end = f"{srv}v1/ordinals/verify-utxos"

https://unisat.io/plans

© Coinspect 2024 17 / 18

def send_evil_force_500():
 r = requests.post(end, json={"address":
"bc1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq", "utxos": [{"txid":
"9f7865756c1e2651a260abebe1b0d1d37b0d73af8b77759fd8ef2060626e25c0",
"vout": 30}]})
 print(r.json())
 return r

def send_evil_force_404():
 r = requests.post(end, json={"address":
"bc1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq", "utxos": [{"txid":
"bc4c30829a9564c0d58e6287195622b53ced54a25711d1b86be7cd3a70ef61ed",
"vout": 13}]})
 print(r.json())
 return r

© Coinspect 2024 18 / 18

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

