

© Coinspect 2025 1 / 118

Babylon Phase 2
Source Code Audit

Version: v250324 Prepared for: Babylon March 2025

Security Assessment

1. Executive Summary
2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope
3.1 Review of fixes

4. Assessment
4.1 Security assumptions
4.2 Mitigating supply chain and infrastructure risks

5. Detailed Findings
BP2�001 � Minority of stakers can cause inconsistent
finalization

© Coinspect 2025 2 / 118

BP2�002 � Recursion in AnteHandler allows for
potentially arbitrary stack-depth
BP2�003 � Attacker can avoid checkpointing state by
sending more than one message
BP2�004 � Attacker can spam mempool with Bitcoin
related messages
BP2�005 � Attacker can avoid checkpointing state by
using WASM contracts
BP2�006 � Default transaction fee cap may delay
Bitcoin transaction confirmation
BP2�007 � User can waste time and funds due to
generation of non-standard transactions
BP2�008 � Unsupported TLS connection to bitcoind
nodes
BP2�009 � Attacker can avoid checkpointing with
embedded messages in WASM contracts
BP2�010 � Attacker can stall chain with WASM
contracts
BP2�011 � Governance can approve messages that
bypass checkpointing
BP2�012 � Submitter will crash due to unhandled null
return value
BP2�013 � Adversary can force Babylon node to
waste resources by reprocessing known blocks
BP2�014 � Vigilante Reporter will eventually crash due
to unbounded map growth
BP2�015 � Transaction execution at risk due to
decreased feerate
BP2�016 � Bitcoin transactions not fully validated for
standardization in Babylon node

© Coinspect 2025 3 / 118

BP2�017 � Slashing a validator will cause the node to
crash
BP2�018 � Wrong calculation of default transaction
fee bump prevents bumping transactions
BP2�019 � Replacement transactions might not be
accepted in Bitcoin's mempool
BP2�020 � Slashing can be avoided with unbonding
transactions
BP2�021 � Lack of transaction retry mechanism may
result in delayed transactions
BP2�022 � Single submitter can submit all
checkpoints due to delayed sealed checkpoint
processing
BP2�023 � Submitter transactions may not be relayed
due to very low change output value
BP2�024 � Well-positioned attacker can obtain critical
signatures
BP2�025 � Finality provider can miss signature due to
overflow
BP2�026 � Stake can get stuck with transactions
bigger than 8 kilobytes
BP2�027 � Stake can get stuck due to race condition
when delegating to a slashed finality provider
BP2�028 � Change in parameters leads to slashing
being missed
BP2�029 � Attacker can avoid slashing in BTC by
using wrapped messages
BP2�030 � Attacker can post fake stake in Babylon by
forking Bitcoin
BP2�031 � Chain bloated by checkpoints that are
never forgotten

© Coinspect 2025 4 / 118

BP2�032 � Users may have their transactions rejected
due to the generation of dust outputs
BP2�033 � Unchecked user input allows retrieving
wrong global parameters
BP2�034 � Fixed request ID in Keystone wallet
requests prevents request-response association
BP2�035 � Malicious external API can crash staking
service
BP2�036 � Inability to replay a single unprocessable
message can prevent API server from starting
BP2�037 � Generated protobuf code cannot be
checked for integrity
BP2�038 � Bitcoin transactions might be rejected due
to insufficient minimum feerate
BP2�039 � Library users can create invalid staking
transactions
BP2�040 � Attackers can eclipse node and post a
fake Bitcoin chain
BP2�041 � Malicious indexer instance can crash
vigilante staking tracker
BP2�042 � BLS private key exposed at rest
BP2�043 � Lack of differential testing between
implementations of Bitcoin script libraries
BP2�044 � Proof-of-Possession �PoP� allows for
reuse

6. Disclaimer

© Coinspect 2025 5 / 118

1. Executive Summary
In December 2024, Babylon Labs engaged Coinspect to perform a Source Code
Audit of the Babylon project and the changes made for the Phase-2 of the chain.

Babylon's Phase 2 enables Bitcoin stake to secure the Babylon Genesis chain.
Stakers and finality providers need to opt-in into securing the Babylon Genesis
network. It provides features for stakers of Phase 1 to migrate their stake to
Phase 2.

Solved Caution Advised Resolution Pending

High
4

High
0

High
0

Medium
13

Medium
0

Medium
0

Low
7

Low
0

Low
0

No Risk
20

No Risk
0

No Risk
0

Total

44
Total

0
Total

0

The review resulted in 4 high severity issues: BP2-001 details how a minority of
stakers can cause inconsistent finalization. BP2-003 describes how an attacker can
avoid checkpointing changes to the validator set. BP2-017 shows that the nodes
on the network will crash soon after slashing a validator. BP2-029 shows how an
adversarial finality provider can consistently avoid slashings in BTC. All of these
risks have been mitigated.

https://babylonlabs.io/
https://coinspect.com/

© Coinspect 2025 6 / 118

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

The total risk is determined by evaluating its impact and likelihood within the
context of the system’s threat model:

Impact �Low to High): Measures the potential consequences of a successful
attack on the system’s confidentiality, integrity, and availability.
Likelihood �Low to High): Estimates the probability of an attack’s success,
factoring in technical complexity, exploitability, and cost-benefit
considerations for an attacker.

Combining impact and likelihood produces the overall risk level: higher impact
and likelihood lead to greater risk, while lower values reduce it. This approach
prioritizes vulnerabilities consistently within a single security report.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

BP2�001 Minority of stakers can cause inconsistent finalization High

BP2�003 Attacker can avoid checkpointing state by sending more
than one message High

BP2�017 Slashing a validator will cause the node to crash High

BP2�029 Attacker can avoid slashing in BTC by using wrapped
messages High

BP2�004 Attacker can spam mempool with Bitcoin related
messages Medium

BP2�005 Attacker can avoid checkpointing state by using WASM
contracts Medium

© Coinspect 2025 7 / 118

BP2�009 Attacker can avoid checkpointing with embedded
messages in WASM contracts Medium

BP2�010 Attacker can stall chain with WASM contracts Medium

BP2�011 Governance can approve messages that bypass
checkpointing Medium

BP2�012 Submitter will crash due to unhandled null return value Medium

BP2�018 Wrong calculation of default transaction fee bump
prevents bumping transactions Medium

BP2�019 Replacement transactions might not be accepted in
Bitcoin's mempool Medium

BP2�020 Slashing can be avoided with unbonding transactions Medium

BP2�024 Well-positioned attacker can obtain critical signatures Medium

BP2�026 Stake can get stuck with transactions bigger than 8
kilobytes Medium

BP2�028 Change in parameters leads to slashing being missed Medium

BP2�030 Attacker can post fake stake in Babylon by forking
Bitcoin Medium

BP2�006 Default transaction fee cap may delay Bitcoin
transaction confirmation Low

BP2�007 User can waste time and funds due to generation of
non-standard transactions Low

BP2�013 Adversary can force Babylon node to waste resources
by reprocessing known blocks Low

BP2�014 Vigilante Reporter will eventually crash due to
unbounded map growth Low

BP2�031 Chain bloated by checkpoints that are never forgotten Low

BP2�032 Users may have their transactions rejected due to the
generation of dust outputs Low

BP2�038 Bitcoin transactions might be rejected due to insufficient
minimum feerate Low

© Coinspect 2025 8 / 118

BP2�002 Recursion in AnteHandler allows for potentially arbitrary
stack-depth None

BP2�008 Unsupported TLS connection to bitcoind nodes None

BP2�015 Transaction execution at risk due to decreased feerate None

BP2�016 Bitcoin transactions not fully validated for
standardization in Babylon node None

BP2�021 Lack of transaction retry mechanism may result in
delayed transactions None

BP2�022 Single submitter can submit all checkpoints due to
delayed sealed checkpoint processing None

BP2�023 Submitter transactions may not be relayed due to very
low change output value None

BP2�025 Finality provider can miss signature due to overflow None

BP2�027 Stake can get stuck due to race condition when
delegating to a slashed finality provider None

BP2�033 Unchecked user input allows retrieving wrong global
parameters None

BP2�034 Fixed request ID in Keystone wallet requests prevents
request-response association None

BP2�035 Malicious external API can crash staking service None

BP2�036 Inability to replay a single unprocessable message can
prevent API server from starting None

BP2�037 Generated protobuf code cannot be checked for
integrity None

BP2�039 Library users can create invalid staking transactions None

BP2�040 Attackers can eclipse node and post a fake Bitcoin chain None

BP2�041 Malicious indexer instance can crash vigilante staking
tracker None

BP2�042 BLS private key exposed at rest None

© Coinspect 2025 9 / 118

BP2�043 Lack of differential testing between implementations of
Bitcoin script libraries None

BP2�044 Proof-of-Possession �PoP� allows for reuse None

© Coinspect 2025 10 / 118

3. Scope
The review lasted for 8 weeks, with a start date of December 23, 2024. At the
start of the review, the scope was set to the following Babylon core repositories.

 https://github.com/babylonlabs-io/babylon/ at commit
a3b749d7cd6f9d46fc484508bba9aea719eb94b2.

 https://github.com/babylonlabs-io/vigilante/ at commit
5d02378e4fdef27826b5d5ee6bf053d1516f8cfb.

 https://github.com/babylonlabs-io/btc-staker/ at commit
b3c16973078c4b95e8adbebb8c83e0f404aec937.

 https://github.com/babylonlabs-io/finality-provider/ at commit
f57fbddf218a84faa2c2ced868485de725364f3f.

 https://github.com/babylonlabs-io/covenant-emulator/ at commit
817dbba627f828e265f790dcce08f77c94c4c358.

On Week 6 of the review, the scope of the web services repositories was set and
their review started. The web services repositories were:

 https://github.com/babylonlabs-io/simple-staking at commit
ddac0e8860d4ccf19462398cb0e8e60e8952ee26.

 https://github.com/babylonlabs-io/bbn-core-ui at commit
9a6a5548d36049884d32d48fc7cb55c88e2152f9.

 https://github.com/babylonlabs-io/babylon-wallet-connect/ at commit
411e125f4fc386d3bda50c7c6ab470e6da439ee4.

 https://github.com/babylonlabs-io/btc-staking-ts at commit
de1d1cff3ef4ad45b5c61f0d7b11fd4479de278a.

 https://github.com/babylonlabs-io/staking-api-service at commit
eb99c0d24cd55fff474755cf886eed281333adcc.

 https://github.com/babylonlabs-io/babylon-staking-indexer/ at commit
46d1de1efb181fcce4d29e70deac42b28ac9e9b8.

 https://github.com/babylonlabs-io/staking-expiry-checker at commit
c46282e02cf857b2f3ce69abf9132b3415097d39.

 https://github.com/babylonlabs-io/staking-queue-client at commit
c4b08ada1f40852bdeecee550866eae308b52616.

 https://github.com/babylonlabs-io/babylon-proto-ts at commit
11d093c77ae3b7da5594fabfa34108ab41c2e6f7.

See the 4. Assessment section for details on the difference between the two sets
of repositories.

Towards the end of the engagement, the Babylon Labs team requested a review
of the following Pull Requests:

© Coinspect 2025 11 / 118

 https://github.com/babylonlabs-io/babylon/pull/467, which addresses a BLS
keystore improvement. This was merged into the main branch at commit
d065cdd9d7f1219fece38cb678d1233566cf530b.

 https://github.com/babylonlabs-io/vigilante/pull/211, introducing an
indexer service to the Bitcoin staking tracker module. These changes were
merged into the main branch at commit
d1fbd204c307f27c240799df406a79f8ac86e03.

After the engagement ended, the Babylon Labs team requested further review of
two additional pull requests related to changes in the proof-of-possession
verification. The pull requests were:

 https://github.com/babylonlabs-io/btc-staking-ts/pull/72/files
 https://github.com/babylonlabs-io/babylon/pull/706

All pull requests in scope were reviewed independently of the rest of the
components and only the diff shown in the pull request itself was in scope.

3.1 Review of fixes

The review of fixes was made during and after the main review. Each fix was
separated into a different PR by the Babylon Labs team. Coinspect analyzed each
pull request to check if the changes mitigated the relevant issue.

The details of the PRs can be found on the Status section of each issue.

© Coinspect 2025 12 / 118

4. Assessment
The Babylon Genesis chain aims to act as a security and liquidity coordination
layer onboarding bitcoin liquidity and security to the decentralized world. Phase-2
is the next step towards this vision by enabling bitcoin security and liquidity to be
onboarded on the Babylon Genesis chain. This is achieved by leveraging several
different strategies: Bitcoin staking scripts assert that stake will be locked for
slashing if needed, Extractable-One-Time-Signatures are used to slash stakers
even when they double-sign on a chain that does not natively have access to the
staked funds, and Bitcoin timestamping is used to assert that a canonical chain is
inscribed in Bitcoin and cannot be reversed without controlling a majority of
Bitcoin Proof-of-Work.

The review encompasses periphery components besides the node itself, such as
the vigilante project and the covenant-emulator. While these projects are not part
of the node, they are security critical: the Babylon chain depends on the existence
of at least one honest, well-behaved vigilante to listen for slashing events from
the Babylon chain and leverage the information at its disposal to slash double-
signers in Bitcoin. The covenant-emulator is run by an allowlisted set of entities and
needs an honest majority: if most of the covenant set members are not honest,
they can prevent new stakes or collude with finality providers so as to avoid
slashings. The finality-provider component is also important, as it needs to
behave correctly to avoid double-signing by mistake.

Additionally, The BTC staker software enables Bitcoin staking through a daemon
(stakerd) that connects to Bitcoin and Babylon nodes, plus a CLI tool (stakercli)
for user operations. The CLI lets users stake, withdraw, and unbond funds while
monitoring finality providers in Babylon. It requires a Bitcoin node with bitcoind
recommended over btcd. Coinspect mainly focused on examining limitations that
could prevent users from executing transactions at desired times, as well as
vulnerabilities in parameter validation that could result in unintended transaction
outcomes.

The vigilante's submitter module ensures the Babylon network periodically
submits checkpoints to the Bitcoin network. Since each checkpoint exceeds
Bitcoin's OP_RETURN 80-byte limit, it is split into two BTC transactions. The
submitter repeatedly fetches SEALED checkpoints from Babylon and submits them
to Bitcoin until they are successfully recorded on Bitcoin while minimizing
duplicate submissions and transaction fees. Coinspect covered issues related to
race conditions, the creation and submission of correct Bitcoin transactions, error
handling, and denial-of-service risks.

On the other hand, the vigilante's reporter module is responsible for forwarding
Bitcoin headers and checkpoints to the Babylon network, keeping Babylon's

© Coinspect 2025 13 / 118

Bitcoin header chain updated. Upon detecting a new Bitcoin block, the reporter
extracts the block header and any associated checkpoint, wraps them into
transactions, and submits them to Babylon. The security review examined risks
related to external disruptions in checkpoint transactions processing and
reporting, as well as ensuring proper startup behavior, including synchronizing
with an up-to-date Bitcoin node and accurately reporting all Bitcoin blocks to
Babylon.

It is worth pointing out that it is unknown how, when, and how much rewards will
be distributed to submitters and reporters, but rewards should account for BTC
transaction fees, and the design must ensure that rewards exceed the costs
incurred. Additionally, Coinspect found multiple TODO comments. Several issues
were identified as having a root cause related to TODO notes. The total test
coverage for this repository was 28.7%. Coinspect recommends increasing the
coverage of the unit tests to prevent problems being introduced in subsequent
changes as this repository is one of the most critical for maintaining Babylon's
security guarantees.

The covenant-emulator is another important part of the system. The covenant-
emulator is a program that is intended to be run by a set of members in a
committee. The main job of the committee is to prevent stakers from providing
staking transactions that have already been unbonded before the system had time
to process them. The committee will only provide signatures for the unbonding
transactions once the intention to stake has been announced. It is important to
note that, in the presence of an evil majority of committee members, the
security assumptions of the system no longer hold. This evil committee would
be able to collude and create finality providers that can avoid slashing when
double signing. It is also important to note that if the committees stop responding
to signing requests the whole system will stop processing new stake.
Nevertheless, the Bitcoin stake of delegators that have given funds to an honest
finality provider would be safe.

This review also included web components such as the staking-api-service and
simple-staking. These repositories serve as interfaces and utilities that aim to
provide a smooth experience for stakers and other users of the chain. While not
critical compared to the chain-related components, these components need to
behave correctly to prevent users from staking with incorrect data or being victim
of phishing attempts. They also need to consider potential attackers that want to
perform a denial of service.

Coinspect started analyzing these web components during the last two weeks of
the review effort. These web components have a different threat model than the
chain itself. The most important threats are:

 Web vulnerabilities such as Cross-Site Scripting or Open Redirects, which
allow attackers to trick users into singing malicious transactions

 Denial-of-service attacks against Babylon applications.
 Safety issues where a user can, by mistake, create and broadcast a Bitcoin

transaction that will be then rejected by the Babylon chain.

© Coinspect 2025 14 / 118

 Bugs in the interactions with the wallets that lead to mistakes in the creation
of Bitcoin transactions.

 Supply-chain issues that lead to a compromised frontend being presented to
users.

As the wallets are out of scope for this particular review, the ability to detect
problems in category �4� is limited. On the same note, potential supply-chain or
infrastructure-related attacks are difficult to detect from the application's
codebase. With this in mind, Coinspect has crafted some general advice to
mitigate these risks (see 4.2: Mitigating supply chain and infrastructure risks).

One of the most important repositories of the web application set is btc-staking-
ts. This library builds Bitcoin transactions that stakers will use to stake and
unbond, and that vigilantes can use to slash in case of equivocations. Note that
the library is a mirror in Typescript of the Go library found at babylon/btcstaking.
As such, Coinspect strongly recommends that differential testing be
implemented between the two, as this is the most effective way to detect
mismatches between the two implementations. This recommendation is reflected
in BP2-043.

Another special repository is the babylon-proto-ts, which is generated from the
protobuf files of the Babylon node. While Coinspect attempted to reproduce the
generated code, the content of babylon-proto-ts did not match the results of
regeneration. The risk of an exploit being hidden by malicious actors in the
generated code is documented in the informational issue BP2-037.

Validator secret management

Currently, Babylon node operators can configure validators using the storage
methods specified in the CometBFT documentation. One of the methods involves
storing private keys in plaintext within a file on the validator server. However, this
approach introduces a security risk: if an attacker gains access to a validator's
host or their filesystem backup, they can extract the validator's private key. A
similar issue was identified during the review of a BLS keystore-related pull
request, as outlined in BP2-042.

Notably, CometBFT supports an alternative mechanism that leverages a remote
signer. Publicly available implementations such as Tendermint KMS, are typically
used alongside a Cloud HSM setup to mitigate the risk of key exposure at rest.
However, even if a remote signer with HSM is implemented, certain Babylon node
functions still require the plaintext private key to reside in a file, as they invoke
the LoadConsensusKey function.

Coinspect recommends providing support for validators that want to decouple
the BLS key management from the node by supporting a remote signer interface
for BLS Keys, similar to what Cosmos supports for the validator key. Babylon's

https://docs.cometbft.com/main/references/config/priv_validator_key.json
https://github.com/tendermint/tendermint/blob/v0.25.0/docs/architecture/adr-008-priv-validator.md
https://github.com/iqlusioninc/tmkms/tree/main

© Coinspect 2025 15 / 118

validator should be made aware of the intrinsic risks of handling a private key that
is automatically available. Recommendations for validators should describe:

Current CometBFT requirements and limitations.
The necessity for two different keys (validator key, and BLS key).
Resource requirements to implement and sustain the strategy, such as a Cloud
HSM.
The benefits of protecting the secrets at rest.

Babylon Labs has stated that including remote BLS key management is something
that is planned in their roadmap.

Proof-of-Possession �PoP� review

Towards the end of the project, Babylon Labs requested a review of Pull Requests
#706 and #72. These updates enable Proof-of-Possession �PoP� signing using BIP�
322 for Taproot and native SegWit addresses. PoPs serve to verify control over a
Bitcoin address by a Babylon actor and are required for creating finality providers
and registering Bitcoin delegations. With these changes, the PoP is now expected
to include the Babylon address. Coinspect's review also examined the code
handling PoP verification (CreateBTCDelegation and CreateFinalityProvider) to
ensure no unintended side effects.

4.1 Security assumptions

The Bitcoin network is assumed to be reliable and it is expected its hashrate
will not fluctuate drastically.
The Bitcoin network is assumed to not be censoring or delaying inclusion of
certain transactions.
At least one vigilante program is running and it gets its information from non-
adversarial Bitcoin and Babylon nodes.
At least two thirds of the finality providers (when weighted by BTC stake
delegated to them) are live to enable finalization of blocks.
At least two thirds of the native CometBFT validators are live and produce new
blocks.
The Bitcoin and Babylon nodes used by the staker daemon are trusted and
operating correctly.
The majority of the covenant committee is live and honest.

https://github.com/babylonlabs-io/babylon/pull/706
https://github.com/babylonlabs-io/btc-staking-ts/pull/72
https://github.com/bitcoin/bips/blob/master/bip-0322.mediawiki

© Coinspect 2025 16 / 118

4.2 Mitigating supply chain and infrastructure
risks

A dApp is only as secure as its supply chain and the network it runs on. If an
attacker can compromise infrastructure or code dependencies in such a way that
users are delivered a compromised frontend when they access the domain of the
dApp, the attacker has absolute control over the actions of the frontend and can
perform a myriad of attacks.

These attacks are complex and cannot be detected on the application's
codebase. As such, Coinspect is providing Babylon with a set of general
guidelines to follow to mitigate these risks. Nevertheless, constant monitoring is
needed.

Local-first: an user should be able to download the repository from Github and
run the frontend locally.
Prioritize reproducibility: that same user should be able to easily compare
between their version of the frontend and the one hosted by Babylon.
2FA is a must: use two-factor authentication for all accounts that have access
to the cloud environment, even if they cannot access the host where the
application is running. Avoid using SMS as a second factor.
Implement constant monitoring: to detect changes in DNS records, new
scripts being loaded by the frontend, changes to the CDN data or new
deployments on the relevant hosts.

© Coinspect 2025 17 / 118

5. Detailed Findings

BP2�001
Minority of stakers can cause inconsistent
finalization

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

babylon/x/finality/keeper/tallying.go

Description

A set of evil finality providers that control 1/3 of the stake can prevent a
block from being finalized and then finalize subsequent blocks. This breaks a
core blockchain invariant: if a block at height n is finalized, then a block at
height n-1 should also be finalized.

© Coinspect 2025 18 / 118

Because of this issue, a group of finality providers in control of 1/3 of the
stake can observe a Tendermint block at height h and avoid providing the
finality gadget signature for it with their EOTS key. One the next block, they
do provide their EOTS. This means that, from Babylon's point of view, block
h+1 is finalized but h is not.

Being a core invariant, the problem has several consequences. Conceptually, it
allows evil finality providers to vote for non-canonical blocks while
maintaining the illusion that the chain is still being finalized, as the
LastFinalizedHeight will be updated.

More practically, the rewards depend on this invariant. In
babylon/x/finality/keeper/rewarding.go, the rewarding process will halt
indefinitely as soon as it hits the first non-finalized block.

for height := nextHeightToReward; height <= uint64(targetHeight);
height++ {
 block, err := k.GetBlock(ctx, height)
 if err != nil {
 panic(err)
 }
 if !block.Finalized {
 break
 }
 k.rewardBTCStaking(ctx, height)
 nextHeightToReward = height + 1
}

The root cause is a wrongly-placed break inside a switch statement in
babylon/x/finality/keeper/tallying.go:

switch {
 case fpSet != nil && !ib.Finalized:
 // has finality providers, non-finalised: tally and try to
finalise the block
 voterBTCPKs := k.GetVoters(ctx, ib.Height)
 if tally(fpSet, voterBTCPKs) {
 // if this block gets >2/3 votes, finalise it
 k.finalizeBlock(ctx, ib)
 } else {
 // if not, then this block and all subsequent blocks should
not be finalised
 // thus, we need to break here
 break
}

Recommendation

Make the iteration that finalizes blocks end as soon as the first block that
does not reach a super-majority of voting power is encountered.

© Coinspect 2025 19 / 118

Status

Fixed in pull request #375. The loop now breaks immediately upon finding a
non-finalized block.

https://github.com/babylonlabs-io/babylon/pull/375

© Coinspect 2025 20 / 118

BP2�002
Recursion in AnteHandler allows for
potentially arbitrary stack-depth

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

babylon/x/epoching/keeper/drop_validator_msg_decorator.go

Description

The NewDropValidatorMsgDecorator antehandler uses recursion to check the
InternalMsgs of the authz.MsgExec messages. This allows an attacker to send
an authz.MsgExec message which contains an embedded authz.MsgExec and so
on and so forth.

While no impact was observed with current parameters, if the network
increased the maximum gas available on blocks or node operators limit go
stack size this would allow an attacker to cause issues due to the stack
growing without control, forcing the program to stop. Note that while the
attacker would need funds to pass the gas checks (as part of the gas is
charged by transaction size), the attacker would not spend the funds, as the
node would hit the stack limit before the transaction is inserted in the
mempool and thus would not be valid.

© Coinspect 2025 21 / 118

// check if any of the internal messages is a validator-related message
for _, internalMsg := range internalMsgs {
 // recursively validate the internal message
 if err := qmd.ValidateMsg(internalMsg); err != nil {
 return err
 }
}

Recommendation

Change the recursive logic to an iterative one. Consider putting a limit on the
amount of nested messages supported by the AnteHandler.

Status

Fixed in pull request #468. The DropValidatorMsgDecorator does not exist
anymore.

https://github.com/babylonlabs-io/babylon/pull/468

© Coinspect 2025 22 / 118

BP2�003
Attacker can avoid checkpointing state by
sending more than one message

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

babylon/x/epoching/keeper/drop_validator_msg_decorator.go

Description

An attacker can bypass the DropValidatorMsgDecorator antehandler by sending
a transaction with more than one message. The DropValidatorMsgDecorator is
supposed to prevent users from making stake-related changes to the
blockchain state between epochs, as it is imperative for the protocol that all
stake-related state is checkpointed into Bitcoin. By leveraging this attack,
adversaries can change stake-related state and avoid it being checkpointed,
as the message is executed immediately.

The root cause of the is a missing err != nil check in the iterator that goes
through the messages of the transaction:

func (qmd DropValidatorMsgDecorator) AnteHandle(ctx sdk.Context, tx
sdk.Tx, simulate bool, next sdk.AnteHandler) (newCtx sdk.Context,j err
error) {

© Coinspect 2025 23 / 118

 // skip if at genesis block, as genesis state contains txs that
bootstrap the initial validator set
 if ctx.BlockHeight() == 0 {
 return next(ctx, tx, simulate)
 }
 // after genesis, if validator-related message, reject msg
 for i, msg := range tx.GetMsgs() {
 err := qmd.ValidateMsg(msg)
 return ctx, err
 }

 return next(ctx, tx, simulate)
}

Because the AnteHandle returns after the first message whether there is an
error or not, an attacker can send a staking message as the second message
in the transaction and have it executed immediately.

Recommendation

Add an err != nil check.

Status

Fixed in pull request #385.

Updated in pull request #468, which deleted the decorator itself.

https://github.com/babylonlabs-io/babylon/pull/385
https://github.com/babylonlabs-io/babylon/pull/468

© Coinspect 2025 24 / 118

BP2�004
Attacker can spam mempool with Bitcoin
related messages

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

babylon/x/epoching/keeper/drop_validator_msg_decorator.go

Description

An attacker can spam the mempool with invalid MsgInsertBTCSpvProof and
MsgInsertHeaders messages as these messages will skip checks when being
checked for mempool insertion.

The root cause of the issues is the code-section as BP2-003: because a return
that is supposed to be called only in case of an error is invoked always in the
DropValidatorMsgDecorator, it does not call the next callback; which should
continue the check chain.

Because of this, the next ante handler is not called. In Babylon, the next ante
handler configured after the DropValidatorMsgDecorator is the
BtcValidationDecorator, which checks MsgInsertBTCSpvProof and
MsgInsertHeaders messages during CheckTx and ReCheckTx operations.

© Coinspect 2025 25 / 118

Recommendation

Add an err != nil check.

Status

Fixed in pull request #385.

Updated in pull request #468, which deleted the decorator itself.

https://github.com/babylonlabs-io/babylon/pull/385
https://github.com/babylonlabs-io/babylon/pull/468

© Coinspect 2025 26 / 118

BP2�005
Attacker can avoid checkpointing state by
using WASM contracts

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

Description

An attacker can deploy a cosmwasm contract to interact directly with the
Cosmos staking module, bypassing the DropValidatorMsgDecorator and the
queuing mechanism implemented therein. The impact of this attack is exactly
the same as BP2-003. The likelihood of this attack is considered low only
because the deployment of cosmwasm contracts is whitelisted on Babylon
mainnet. Nevertheless, the Babylon Labs team expressed interest in removing
the whitelist, so Coinspect also researched potential mitigations and showed
that using the capabilities features of cosmwasm would not serve as a fix.

The issue lies in how cosmwasm contracts interact with the underlying chain.
cosmwasm uses a message system that defers calls from a contract to other
modules until the end of the message execution. To execute the calls,
cosmwasm simply dispatches them through the MsgRouter of the Cosmos
application.

https://github.com/CosmWasm/cosmwasm/blob/main/SEMANTICS.md#dispatching-messages

© Coinspect 2025 27 / 118

Because the staking module is a registered service of Babylon's application,
the router will dispatch calls to it directly. The submessage will not go
through any ante handler.

While removing the staking capability from the capabilities list on the wasm
keeper appears as a possible mitigation, it is trivial to bypass for an attacker:
cosmwasm checks for capabilities with a hardcoded string on the wasm binary
but still exposes all functionality to the binary regardless of the capabilities it
announces. If the staking capability were removed, an attacker would only
have to edit the requires_staking string out of the wasm binary to be able to
deploy and execute the code.

Recommendation

Maintain the whitelist to deploy contracts and review each contract to make
sure it does not communicate with the native staking module.

Alternatively, consider removing the native staking module from the
application's router. This way submessages sent by cosmwasm contracts will not
be able to find the staking module. Nevertheless, this implies several changes
to the Babylon codebase, as Babylon's app now relies on the existence of
said routes for certain operations such as genesis creation.

See BP2-009 for more possible mitigations.

Status

Fixed in pull request #468. The process by which services are registered in
Cosmos has been modified so as to avoid registering the staking module in
the router. This makes the staking routes inaccessible via the message server.

Running a cosmwasm contract that communicates with the staking module now
results in a can't route message error:

Error: rpc error: code = Unknown desc = rpc error: code = Unknown desc
= failed to execute message; message index: 0: dispatch: submessages:
can't route message
delegator_address:"bbn14hj2tavq8fpesdwxxcu44rty3hh90vhujrvcmstl4zr3txmf
vw9sw76fy2"
validator_address:"bbnvaloper1a0r5s47deargeftzhjcgrmra8cfu2c5d6933ys"
amount:<denom:"ubbn" amount:"10000000" > : unknown request
[CosmWasm/wasmd@v0.53.0/x/wasm/keeper/handler_plugin.go:125] with gas
used: '144688': unknown request

https://github.com/babylonlabs-io/babylon/pull/468

© Coinspect 2025 28 / 118

BP2�006
Default transaction fee cap may delay
Bitcoin transaction confirmation

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

btc-staker/staker/feeestimator.go

vigilante/submitter/relayer/relayer.go

Description

Transactions may be delayed when the default fee rate cap is used and it is
insufficient for the current network fee, potentially causing stakers to miss
staking deadlines or limits.

The staker CLI's fee estimator service enforces a default MaxFeeRate of 25
sat/vbyte, which is applied when the estimated network fee exceeds this limit.

if estimatedFee > e.MaxFeeRate {
 e.logger.WithFields(logrus.Fields{
 "maxFeeRate": e.MaxFeeRate,
 "estimated": estimatedFee,
 }).Debug("Estimated fee is higher than max fee rate. Using max fee
rate")

© Coinspect 2025 29 / 118

 return e.MaxFeeRate
}

It is worth mentioning that users can override the MaxFeeRate by specifying a
custom value in the configuration file, although this is optional.

This capped feerate is applied to staking transactions in the StakeFunds
function:

feeRate := app.feeEstimator.EstimateFeePerKb()

app.logger.WithFields(logrus.Fields{
 "stakerAddress": stakerAddress,
 "stakingAmount": stakingInfo.StakingOutput,
 "fee": feeRate,
}).Info("Created and signed staking transaction")

req := newOwnedStakingCommand(
 stakerAddress,
 stakingInfo.StakingOutput,
 feeRate,
...

A similar issue arises in the relayer code of the Vigilante Submitter module.
The following snippet, taken from the getFeeRate function, determines the fee
rate for Bitcoin checkpoint segment transactions. If this fee rate is capped
below the current network fee rate, the Submitter may fail to submit the
checkpoint in time:

cfg := rl.GetBTCConfig()
if feePerKVByte > cfg.TxFeeMax {
 rl.logger.Debugf("current tx fee rate is higher than the maximum tx
fee rate %v, using the max", cfg.TxFeeMax)
 feePerKVByte = cfg.TxFeeMax
}
if feePerKVByte < cfg.TxFeeMin {
 rl.logger.Debugf("current tx fee rate is lower than the minimum tx
fee rate %v, using the min", cfg.TxFeeMin)
 feePerKVByte = cfg.TxFeeMin
}

Recommendation

Communicate clearly to users the importance of setting their own caps and
what the defaults currently are so they can create a fee strategy that satisfies
their needs.

© Coinspect 2025 30 / 118

As a default is needed, set it to be more lax. The current 25 has been
surpassed already in periods of high BTC activity. In general, a default of 200
sat/vbyte is reasonable, as it is high enough to serve even in periods of very
high activity while protecting the operator from unreasonable losses in fees.
Nevertheless, it is recommended that Babylon perform their own calculation
to establish a maximum amount for users to use in fees by default and their
average transaction virtual size.

Status

Fixed in#154 for btc-staker and #257 por vigilante. The new default is of
200 sat/vbyte.

https://www.mesmerdata.com/on-chain-charts/btc-tx-fee-rate-sat/
https://github.com/babylonlabs-io/btc-staker/pull/154
https://github.com/babylonlabs-io/vigilante/pull/257

© Coinspect 2025 31 / 118

BP2�007
User can waste time and funds due to
generation of non-standard transactions

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

btc-staker/walletcontroller/transaction.go

btc-staker/staker/types.go

Description

A user can waste time and, as a result, get worse fees for their BTC
transaction because the BTC staker code allows for the creation of non-
standard transactions. Even though non-standard transactions are still valid,
they will not be accepted by most miners. As a result, an user that wants to
stake at a certain time will get delayed until they can diagnose and fix the
issue, potentially resulting in worse fees if the network fees are increasing.

Coinspect noticed that the buildTxFromOutputs function in charge of creating
transactions lacks checks regarding the change amount exceeding the
minimum dust value, as well as transaction size checks. Additionally, no
checks were observed on this function's return value down the execution
path.

© Coinspect 2025 32 / 118

A similar situation occurs with the createUndelegationData and
createSpendStakeTx functions from the types.go file.

Recommendation

Verify that transactions generated by the staker CLI meet the standard
transaction policy. Specifically, add checks to prevent the component from
creating outputs with dust values, as well as the transactions' size falling
within the expected limits.

Status

Fixed in PR #146. Now the staker verifies that the generated transactions do
satisfy the standard requirements, including slashing transactions.

https://github.com/bitcoin/bitcoin/blob/66aa6a47bd8efd7e0448319c74be3ee62caa777a/src/policy/policy.cpp
https://github.com/bitcoin/bitcoin/blob/9d892099378b2ad5f52220403bdeae43c61d6955/src/policy/policy.cpp#L144
https://github.com/bitcoin/bitcoin/blob/1786be7b4a56db8f4a0dd13cf3672bf53d1d2a51/src/validation.cpp#L799
https://github.com/babylonlabs-io/btc-staker/pull/146/

© Coinspect 2025 33 / 118

BP2�008
Unsupported TLS connection to bitcoind
nodes

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

btc-staker/staker/feeestimator.go

vigilante/btcclient/client_wallet.go

Description

TLS connections to bitcoind nodes are not supported. While bitcoind itself
does not natively support TLS, it can be configured behind a TLS proxy.

As illustrated below, the default RPC connection settings explicitly disable
TLS connections to bitcoind nodes, and this restriction cannot be overridden
through user configuration:

case types.BitcoindNodeBackend:
 rpcConfig := rpcclient.ConnConfig{
 Host: cfg.Bitcoind.RPCHost,
 User: cfg.Bitcoind.RPCUser,
 Pass: cfg.Bitcoind.RPCPass,
 DisableConnectOnNew: true,

© Coinspect 2025 34 / 118

 DisableAutoReconnect: false,
 DisableTLS: true,
 HTTPPostMode: true,
 }

A similar situation occurs in the NewWallet from the Vigilante repository as
shown below.

connCfg := &rpcclient.ConnConfig{
 // this will work with node loaded with multiple wallets
 Host: cfg.BTC.Endpoint + "/wallet/" + cfg.BTC.WalletName,
 HTTPPostMode: true,
 User: cfg.BTC.Username,
 Pass: cfg.BTC.Password,
 DisableTLS: true,
}

Recommendation

Introduce an option to allow users to enable TLS connections to bitcoind
nodes.

Status

Acknowledged. Babylon Labs team is tracking work to tackle these issues in
the future in #152 and #254.

https://github.com/babylonlabs-io/btc-staker/issues/152
https://github.com/babylonlabs-io/vigilante/issues/254

© Coinspect 2025 35 / 118

BP2�009
Attacker can avoid checkpointing with
embedded messages in WASM contracts

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

Description

An attacker can send messages directly to the staking module and avoid the
epoching queue by sending an authz.MsgExec that contains a delegated call to
the staking module.

This issue is very similar to BP2-005. Nevertheless, the vector is slightly
different. Instead of sending a staking message directly, the attacker would
wrap it in a auth.MsgExec or through the gov/ module.

The difference is relevant as, depending on the mitigation used for BP2-005,
this issue might still be exploitable even if BP2-005 is fixed.

Recommendation

© Coinspect 2025 36 / 118

The most direct and pervasive mitigation for the family of issues relating to
communicating with the staking module without waiting for the epoch to
finish is to set the base application router to not contain the routes to the
staking module, as the authz module interacts with other modules via the
baseapp.Router and dispatches the messages through it, see cosmos-
sdk/x/authz/keeper/keeper.go:

handler := k.router.Handler(msg)
if handler == nil {
 return nil, sdkerrors.ErrUnknownRequest.Wrapf("unrecognized message
route: %s", sdk.MsgTypeURL(msg))
}

msgResp, err := handler(sdkCtx, msg)
if err != nil {
 return nil, errorsmod.Wrapf(err, "failed to execute message; message
%v", msg)
}

The gov modules does the same, see cosmos-sdk/x/gov/abci.go

// execute all messages
for idx, msg = range messages {
 handler := keeper.Router().Handler(msg)
 var res *sdk.Result
 res, err = safeExecuteHandler(cacheCtx, msg, handler)
 if err != nil {
 break
 }
 events = append(events, res.GetEvents()...)
}

Status

Fixed in pull request #468. See BP2-005.

https://github.com/babylonlabs-io/babylon/pull/468

© Coinspect 2025 37 / 118

BP2�010
Attacker can stall chain with WASM
contracts

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

Description

An attacker can stall the chain by creating a WASM contract that creates an
excessively-nested recursive message. This is described in a public Cosmos
advisory and Coinspect was able to partially reproduce the issue in a proof of
concept. With Coinspect's proof of concept, the victim node stalls and is not
able to produce a block in time, stalling the chain.

This issue is similar to the previously reported BP2-002, but by leveraging the
fact that cosmwasm contracts bypass the transaction check antehandler, the
nodes are impacted.

While in Coinspect tests the node eventually recovers and is able to continue
producing and receiving blocks, the attacker can send another transaction
executing the expensive process. It is possible that in different configurations
the attack leads to a crash, as it depends on the memory available in the
validator's host.

https://github.com/cosmos/cosmos-sdk/security/advisories/GHSA-8wcc-m6j2-qxvm

© Coinspect 2025 38 / 118

Recommendation

Upgrade Cosmos to v0.50.11 or higher.

Status

Fixed in pull request #405. Cosmos version was upgraded to v0.50.11.

Proof of concept

A proof of concept was shared privately with the Babylon Labs team.

https://github.com/babylonlabs-io/babylon/pull/405

© Coinspect 2025 39 / 118

BP2�011
Governance can approve messages that
bypass checkpointing

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

x/epoching/keeper/drop_validator_msg_decorator.go

Description

An attacker can convince the governance to approve a malicious message
that modifies stake-related state and bypasses the logic needed for it to be
checkpointed.

The attack has the same impact as the other issues related to bypassing the
DropValidatorMsgDecorator. In this scenario, the vector is different: while the
decorator analyzes the authz.MsgExec recursively to catch an embedded
message, it does not check for the Messages of the MsgSubmitProposal:

// MsgSubmitProposal defines an sdk.Msg type that supports submitting
arbitrary
// proposal Content.
type MsgSubmitProposal struct {
 // messages are the arbitrary messages to be executed if proposal

© Coinspect 2025 40 / 118

passes.
 Messages []*types.Any `protobuf:"bytes,1,rep,name=messages,proto3"
json:"messages,omitempty"`
 ...

Each message is then executed if the proposal is approved in cosmos-
sdk/x/gov/abci.go:

// execute all messages
for idx, msg = range messages {
 handler := keeper.Router().Handler(msg)
 var res *sdk.Result
 res, err = safeExecuteHandler(cacheCtx, msg, handler)
 if err != nil {
 break
 }

 events = append(events, res.GetEvents()...)
}

The likelihood of this issue is low as it requires the governance to be either
complicit or duped into approving a malicious proposal. Nevertheless, this
poses a real risk and other projects have in fact been the target of malicious
proposals. See the Tornado Cash malicious proposal hack.

Recommendation

Check for gov messages in the AnteHandler. Take note that governance should
get the same treatment as messages related to the authz module, including
precautions detailed in BP2-002.

Status

Fixed in pull request #468. See BP2-005.

https://github.com/coinspect/learn-evm-attacks/tree/master/test/Business_Logic/TornadoCash_Governance
https://github.com/babylonlabs-io/babylon/pull/468

© Coinspect 2025 41 / 118

BP2�012
Submitter will crash due to unhandled null
return value

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

vigilante/submitter/relayer/relayer.go

Description

The submitter will panic when attempting to increase the fee for a checkpoint
transaction that has already been confirmed by the Bitcoin network. This is
possible due to a race condition between the Bitcoin network itself and the
vigilante process.

When the submitter sends the second segment of a Babylon checkpoint as a
Bitcoin transaction, it is added to the mempool. Subsequently, the submitter
monitors the transaction's status using the relayer's
MaybeResubmitSecondCheckpointTx function. If the transaction remains
unconfirmed by the Bitcoin network, this function attempts to increase the
transaction fee to expedite its inclusion in a block.

However, if the function attempts to bump the fee for a transaction that is
already confirmed, it results in a panic. This occurs because the

© Coinspect 2025 42 / 118

resendSecondTxOfCheckpointToBTC function returns nil, nil when the
transaction is confirmed (as shown in the second if in the snippet below).

func (rl *Relayer) resendSecondTxOfCheckpointToBTC(tx2
*types.BtcTxInfo, bumpedFee btcutil.Amount) (*types.BtcTxInfo, error) {
 _, status, err := rl.TxDetails(rl.lastSubmittedCheckpoint.Tx2.TxID,

rl.lastSubmittedCheckpoint.Tx2.Tx.TxOut[changePosition].PkScript)
 if err != nil {
 return nil, err
 }

 // No need to resend, transaction already confirmed
 if status == btcclient.TxInChain {
 rl.logger.Debugf("Transaction %v is already confirmed",
rl.lastSubmittedCheckpoint.Tx2.TxID)

 return nil, nil
 }

The panic occurs because this nil, nil return value is unsafely accessed later
in the function, as shown below:

resubmittedTx2, err :=
rl.resendSecondTxOfCheckpointToBTC(rl.lastSubmittedCheckpoint.Tx2,
bumpedFee)
...
resubmittedTx2.TxID.String(),
strconv.Itoa(int(resubmittedTx2.Fee)),

This issue happens in a race condition scenario where the Bitcoin checkpoint
transaction is not confirmed immediately, leaving the Babylon checkpoint in a
SEALED status. If the Bitcoin transaction is eventually confirmed but the
Babylon checkpoint status remains unchanged, the submitter will encounter a
panic when attempting to bump the fee.

Recommendation

The MaybeResubmitSecondCheckpointTx function should immediately terminate if
the transaction is already confirmed, as there is no need to bump the fee.

Also, consider improving the relayer module's unit testing suite.

Status

© Coinspect 2025 43 / 118

FIxed in pull request #154. The MaybeResubmitSecondCheckpointTx function now
terminates if the second return parameter from
resendSecondTxOfCheckpointToBTC (now called
maybeResendSecondTxOfCheckpointToBTC) is nil.

https://github.com/babylonlabs-io/vigilante/pull/154/

© Coinspect 2025 44 / 118

BP2�013
Adversary can force Babylon node to waste
resources by reprocessing known blocks

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

babylon/x/btclightclient/types/btc_light_client.go

Description

An attacker can exploit the Babylon node to waste computational resources
by reprocessing known Bitcoin blocks. The attacker is not charged gas for the
operation. This vulnerability arises from an issue in the Bitcoin light client
module, which incorrectly treats a given chain of headers as a fork, without
recognizing that the chain is actually the canonical one. As shown in the code
snippet below, an attacker can target the else branch by providing a chain of
headers starting from any block previous to the current chain's tip.

firstHeaderOfExtensionChain := headers[0]
store := newStoreWithExtensionChain(readStore, headersLen)

if firstHeaderOfExtensionChain.PrevBlock.IsEqual(¤tTipHash) {
 // most common case - extending the current tip
 if err := l.processNewHeadersChain(store, currentTip, headers); err

© Coinspect 2025 45 / 118

!= nil {
 return nil, err
 }

 return &InsertResult{
 HeadersToInsert: toBTCHeaderInfos(store.headers),
 RollbackInfo: nil,
 }, nil
} else {
 // possible new fork
 parentHash :=
bbn.NewBTCHeaderHashBytesFromChainhash(&firstHeaderOfExtensionChain.Pre
vBlock)
 forkParent, err := readStore.GetHeaderByHash(&parentHash)

It is important to note that to trigger this vulnerability, a valid Bitcoin block
must be submitted to ensure the chain has more work than the previous one.

The amount of work done by the Babylon nodes is only limited by the amount
of blocks known by the chain and the Cosmos enforced maximum transaction
bytes.

Only participants in the allow-list, which is configurable via parameters, can
submit blocks. However, if this functionality is publicly accessible, anyone
could trigger the vulnerability, significantly increasing the risk.

Furthermore, if the allow-list was removed and cosmwasm contracts could be
used to interact with the light client module, an attacker could create a
contract that performs the attack. This would increase the maximum number
of headers that can be sent, which is currently capped by the Cosmos-
enforced maximum transaction bytes limit. An increased number of headers
would lead to significantly more wasted resources.

Recommendation

Before processing a potential new best fork, verify that the header at
firstHeaderOfExtensionChain is not part of the chain containing the current tip.
This ensures that the chain is properly validated as a new fork before any
further processing.

Consider limiting the number of headers in a MsgInsertHeaders message.

Status

Fixed in pull request #446. The chain will reject forks that start with an
already known header. The implementation uses the fact that a known and

https://github.com/babylonlabs-io/babylon/pull/446

© Coinspect 2025 46 / 118

well-formed header does not return an error.

Proof of Concept

Coinspect prepared the following test, which inserts a block chain starting at
this first block known by the node. It is recommended to follow the in-line
comments.

func TestReprocessEntireChain(t *testing.T) {
 senderPrivKey := secp256k1.GenPrivKey()
 address, err :=
sdk.AccAddressFromHexUnsafe(senderPrivKey.PubKey().Address().String())
 require.NoError(t, err)
 r := rand.New(rand.NewSource(0x42))
 srv, blcKeeper, sdkCtx := setupMsgServer(t)
 ctx := sdk.UnwrapSDKContext(sdkCtx)
 _, chain := datagen.GenRandBtcChainInsertingInKeeper(
 t,
 r,
 blcKeeper,
 ctx,
 0, // ! chain start height
 1000, // ! chain length
)
 initTip := chain.GetTipInfo()

 checkTip(
 t,
 ctx,
 blcKeeper,
 *initTip.Work,
 initTip.Height,
 initTip.Header.ToBlockHeader(),
)

 chainInfo := chain.GetChainInfo()
 firstKnownBlock := chainInfo[0]

 chainExtensionLength := uint32(1001) // MALICIOUS FORK LENGTH
 chainExtension := datagen.GenRandomValidChainStartingFrom(
 r,
 firstKnownBlock.Header.ToBlockHeader(), // OUR FORK STARTS AT
THE FIRST BLOCK KNOWN BY THE NODE
 nil,
 chainExtensionLength,
)

 msg := &types.MsgInsertHeaders{Signer: address.String(),
 Headers: keepertest.NewBTCHeaderBytesList(chainExtension),
 }

 _, err = srv.InsertHeaders(sdkCtx, msg)

https://github.com/babylonlabs-io/babylon/pull/446

© Coinspect 2025 47 / 118

 require.NoError(t, err)
}

To execute this test, place it in
babylon/x/btclightclient/keeper/msg_server_test.go and execute it by
running go test -v ./x/btclightclient/keeper -run TestReprocessEntireChain.

© Coinspect 2025 48 / 118

BP2�014
Vigilante Reporter will eventually crash
due to unbounded map growth

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

vigilante/types/ckpt_cache.go

Description

The Babylon Vigilante Reporter will crash as the map that stores unmatched
checkpoint segments is not periodically cleaned up. When unmatched
segments accumulate, the resulting unbounded growth of data in these
structures will lead to memory exhaustion on the host running the vigilante,
ultimately causing it to crash. It is important to note that the Match function
does remove segment pairs that successfully form a checkpoint:

// Remove the two ckptSeg in segMap
delete(c.Segments[uint8(0)], hash1)
delete(c.Segments[uint8(1)], hash2)

However, Coinspect did not identify logic to periodically clean up segments
that cannot be matched to form a checkpoint.

© Coinspect 2025 49 / 118

As these single segments are obtained from Bitcoin transactions, it is unlikely
for this attack to be achieved. This is due to the fact that an adversary would
need to incur Bitcoin network fees to cause these maps to grow indefinitely.
The likelihood is also lowered by the fact that the cache is re-initializated
when the reporter detects it is out-of-sync with the Bitcoin node.

Recommendation

Implement a mechanism to clean up unmatched segments after a safe time
period or a defined number of blocks have passed.

Status

Fixed in pull request #233. The checkpoints now have a Time-To-Live and are
discarded once they expire.

https://github.com/babylonlabs-io/vigilante/pull/233

© Coinspect 2025 50 / 118

BP2�015
Transaction execution at risk due to
decreased feerate

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

vigilante/submitter/relayer/relayer.go

Description

The submitter's relayer generates transactions with a lower fee rate than
intended due to the addition of a change output.

This happens because the relayer forces the inclusion of a change output for
the first checkpoint segment transaction, even if one is not needed. This
output is included after funding the transaction (selecting enough inputs to
cover the value plus fees).

// 1. INPUTS ARE SELECTED
rawTxResult, err := rl.BTCWallet.FundRawTransaction(tx,
btcjson.FundRawTransactionOpts{
 FeeRate: &feeRate,
 ChangePosition: &changePosition,
}, nil)

© Coinspect 2025 51 / 118

if err != nil {
 return nil, err
}

// 2. ADD CHANGE OUTPUT IF NOT PRESENT
// Ensure the firstTx has a change output, but we can skip this for the
second transaction
hasChange := len(rawTxResult.Transaction.TxOut) > changePosition
// Manually add a change output with 546 satoshis if needed
if !isSecondTx && !hasChange {
 changeAddr, err := rl.BTCWallet.GetRawChangeAddress(rl.walletName)
 if err != nil {
 return nil, fmt.Errorf("error getting raw change address: %w",
err)
 }

 changePkScript, err := txscript.PayToAddrScript(changeAddr)
 if err != nil {
 return nil, fmt.Errorf("failed to create script for change
address: %s, error: %w", changeAddr, err)
 }

 changeOutput := wire.NewTxOut(int64(dustThreshold), changePkScript)
 rawTxResult.Transaction.AddTxOut(changeOutput)
}

Although the change output added is slightly higher than a dust value, this
amount is subtracted from the intended transaction fees, reducing the miner's
incentive to include the transaction in a block. Additionally, the code does not
account for the cost of adding this extra output.

This issue is considered informational because it's uncommon for a typical
Bitcoin transaction to have no change output (referred to as an "exact
payment" transaction).

Finally, it is important to note that once the change output is added, the
hasChange variable which is later referenced in the function, is not updated.
This causes the newly added change output to skip the different change
output related validations.

Recommendation

Re-select transaction inputs after adding the change output.

Consider enhancing the unit testing suite for the submitter's relayer code to
better handle such edge cases.

© Coinspect 2025 52 / 118

Status

Fixed in pull request #226. The inputs are reselected after constructing the
change.

https://github.com/babylonlabs-io/vigilante/pull/226

© Coinspect 2025 53 / 118

BP2�016
Bitcoin transactions not fully validated for
standardization in Babylon node

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

babylon/btcstaking/staking.go

Description

The Babylon node lacks checks to fully assert that transactions submitted
through CreateBTCDelegation are standard. The missing checks are not
currently exploitable, although it is recommended to explicitly prevent the
creation of transactions that do not conform to Bitcoin standard rules. This is
particularly important for the slashing transaction, as the protocol's security
depends on the ability of vigilantes to send slashing transactions to the
Bitcoin network.

The missing validations are:

 Transactions are not checked for standard witness data. A staker is free
to put any data they want on the TxIn[0].Witness field of their
transactions.

https://github.com/bitcoin/bitcoin/blob/1786be7b4a56db8f4a0dd13cf3672bf53d1d2a51/src/validation.cpp#L906

© Coinspect 2025 54 / 118

 Transactions are not checked for minimum size. A staker could in theory
send a transaction that is too small for it to be considered standard.

Both attacks have no impact in the current Babylon codebase. The standard-
witness attack is thwarted by the fact that the witness data is replaced, not
appended to, in the vigilante. The vigilante uses BuildSlashingTxWithWitness
from the btcstaking library, which does:

slashingMsgTxWithWitness, err := tx.ToMsgTx()
if err != nil {
 return nil, err
}
slashingMsgTxWithWitness.TxIn[0].Witness = witness

Manipulating the transaction size is also currently impossible, due to the way
the Babylon node requires the slashing transaction output scripts to match
the expected ones, even for the change output of the slashing transaction.
The added size of the two required scripts makes the transaction bigger than
64 bytes.

 if !bytes.Equal(slashingTx.TxOut[1].PkScript, si.PkScript) {
 return fmt.Errorf("invalid slashing tx change output pkscript,
expected: %s, got: %s", hex.EncodeToString(si.PkScript),
hex.EncodeToString(slashingTx.TxOut[1].PkScript))
 }

Recommendation

While the two missing validations are not exploitable as the current codebase
stands, it is recommended to make them explicit and part of consensus.

Status

Acknowledged.

https://github.com/bitcoin/bitcoin/blob/1786be7b4a56db8f4a0dd13cf3672bf53d1d2a51/src/validation.cpp#L799

© Coinspect 2025 55 / 118

BP2�017
Slashing a validator will cause the node to
crash

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

babylon/x/incentive/keeper/btc_staking_gauge.go

Description

Slashing a validator at height h will cause the node to crash at height h +
FinalitySigTimeout. The node will process the slashing event immediately at
height h causing the FinalityProviderCurrentRewards to be deleted. But the
system assumes that FinalityProviderCurrentRewards exists when calling
RewardBTCStaking at height h + FinalitySigTimeout.

To understand the issue, the interactions between the x/incentive module and
the x/finality module need to be understood. One key data structure in this
interaction is the VotingPowerDistCache which contains information about the
finality providers at each height.

The VotingPowerDistCache is written via a BeingBlocker function. It depends on
the events emitted by power-distribution-changing actions in other modules.
One of these power distribution changes is slashing a finality provider, which

© Coinspect 2025 56 / 118

calls the IncentiveKeeper::FpSlashed method besides modifying the power
distribution cache for the height at which the slashing happened.

case *types.EventPowerDistUpdate_SlashedFp:
 // record slashed fps
 types.EmitSlashedFPEvent(sdkCtx, typedEvent.SlashedFp.Pk)
 fpBTCPKHex := typedEvent.SlashedFp.Pk.MarshalHex()
 slashedFPs[fpBTCPKHex] = struct{}{}
 fp := k.loadFP(ctx, fpByBtcPkHex, fpBTCPKHex)
 if err := k.IncentiveKeeper.FpSlashed(ctx, fp.Address()); err !=
nil {

 panic(err)
 }

The issue is that the FpSlashed method has a side-effect: it will immediately
delete the slashed provider reward data:

// delete all reward tracker that correlates with the slashed finality
provider.
k.deleteKeysFromBTCDelegationRewardsTracker(ctx, fp,
keysBtcDelRwdTracker)
k.deleteAllFromFinalityProviderRwd(ctx, fp)

Consider then that HandleRewarding of the x/finality module is called only
after all validators have had time to sign the blocks. That is: HandleRewarding
is called not on the tip of the chain, but with a delay of FinalitySigTimeout
blocks.

HandleRewarding ends up calling RewardBTCStaking with the
VotingPowerDistCache of the block. It assumes that the keys from the finality
provider still exist:

// btc_staking_gauge.go
if err := k.AddFinalityProviderRewardsForBtcDelegations(ctx,
fp.GetAddress(), coinsForBTCDels); err != nil {
 panic(err)
}

// reward_tracker.go
func (k Keeper) AddFinalityProviderRewardsForBtcDelegations(ctx
context.Context, fp sdk.AccAddress, rwd sdk.Coins) error {

fpCurrentRwd, err := k.GetFinalityProviderCurrentRewards(ctx,
fp)

if err != nil {
return err

}

But GetFinalityProviderCurrentRewards will not exist, because while
processing the slashed event the keys were removed immediately. This
causes AddFinalityProviderRewardsForBtcDelegations to return an error, which
will cause RewardBTCStaking to panic.

© Coinspect 2025 57 / 118

Because RewardBTCStaking runs as part of an EndBlocker process, this panic is
non-recoverable, and will cause a crash in the nodes that are processing this
block.

Recommendation

Avoid modifying the storage immediately upon a slashing event. Instead,
consider using the IsSlashed information on a finality provider to modify the
storage only when the rewards for a slashed validator should be processed.

Status

Fixed in PR #372.

The Babylon Labs team found this issue independently and fixed it soon after
this review started. Their mitigation strategy was to use the IsSlashed data to
avoid adding the slashed finality providers to the VotingPowerDistCache.

https://github.com/babylonlabs-io/babylon/pull/372

© Coinspect 2025 58 / 118

BP2�018
Wrong calculation of default transaction
fee bump prevents bumping transactions

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

vigilante/submitter/relayer/relayer.go

Description

The relayer's Replace-by-Fee �RBF� mechanism for Bitcoin transactions will
not work under the following scenarios:

 When using the default ResubmitFeeMultiplier value.
 When the current fee requirements exceed the fee chosen for the

Replace-by-Fee transaction.

The Vigilante Submitter's attempts to ensure the inclusion of checkpoint
transactions by Replacing-by-Fee �RBF� the second segment transaction.
However, a wrong calculation of the new fee will prevent this mechanism from
succeeding if using the default configuration value.

As shown in the following snippet, the MaybeResubmitSecondCheckpointTx
function computes the new fee and later evaluates whether the bumped fee is

© Coinspect 2025 59 / 118

enough for RBF.

bumpedFee := rl.calculateBumpedFee(rl.lastSubmittedCheckpoint)

// make sure the bumped fee is effective
if !rl.shouldResendCheckpoint(rl.lastSubmittedCheckpoint, bumpedFee) {
 return nil
}

However, the calculateBumpedFee function only multiplies the fee of the
transaction to be replaced by a constant multiplier (ResubmitFeeMultiplier)
passed from the configuration, without considering the current network fee
conditions. By default, this constant is set to 1 (DefaultResubmitFeeMultiplier),
meaning that the calculateBumpedFee function returns the fee of the
transaction to be replaced.

func (rl *Relayer) calculateBumpedFee(ckptInfo *types.CheckpointInfo)
btcutil.Amount {

return ckptInfo.Tx2.Fee.MulF64(rl.config.ResubmitFeeMultiplier)
}

Then, when the shouldResendCheckpoint is called, it will always return false by
default, as requiredBumpingFee will be greater than bumpedFee.

// shouldResendCheckpoint checks whether the bumpedFee is effective for
replacement
func (rl *Relayer) shouldResendCheckpoint(ckptInfo
*types.CheckpointInfo, bumpedFee btcutil.Amount) bool { //ok

// if the bumped fee is less than the fee of the previous
second tx plus the minimum required bumping fee

// then the bumping would not be effective
requiredBumpingFee := ckptInfo.Tx2.Fee +

rl.calcMinRelayFee(ckptInfo.Tx2.Size)

rl.logger.Debugf("the bumped fee: %v Satoshis, the required
fee: %v Satoshis",

bumpedFee, requiredBumpingFee)

return bumpedFee >= requiredBumpingFee
}

Note however that the main problem is not the usage of a bad default fee
multiplier but the lack of consideration of the current network fees for the
Replace-by-Fee transaction. The result of the calculateBumpedFee function
might not be enough to cover the Replace-by-Fee transaction fee under the
current network conditions.

Recommendation

© Coinspect 2025 60 / 118

Compute the replacement transaction fee considering the current network
fee. This resulting value can be also multiplied by a fixed number to ensure its
prompt inclusion.

Status

Fixed in pull request #223. The calculateBumpedFee now considers the current
feeRate.

https://github.com/babylonlabs-io/vigilante/pull/223

© Coinspect 2025 61 / 118

BP2�019
Replacement transactions might not be
accepted in Bitcoin's mempool

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

vigilante/submitter/relayer/relayer.go

Description

Replacement transactions might not be accepted into the mempool due to the
following reasons:

 The transaction is not standard.
 The transaction does not comply with the Replace-by-Fee policy,

specifically the minimum feerate required.

The first problem is actually described in the TODO comment from the snippet
below, extracted from the resendSecondTxOfCheckpointToBTC function. In case
the required replacement transaction fee is greater than the change output
value, the entire change output value is used as fees. This leaves the
transaction with a 0-value (dust) output, causing the transaction to be
considered as non-standard.

https://github.com/bitcoin/bitcoin/blob/9d892099378b2ad5f52220403bdeae43c61d6955/src/policy/policy.cpp#L144

© Coinspect 2025 62 / 118

Additionally, since the replacement transaction fee can be capped to
whatever the change output value is, this might cause the fee to fall below the
minimum feerate required for the Replace-by-Fee policy. On top of that,
Coinspect did not find additional validations of mempool replacement
transactions such as making sure it pays an absolute fee of at least the sum
paid by the original transactions, or that the additional fees covers the
replacement transaction's bandwidth rate.

// set output value of the second tx to be the balance minus the bumped
fee
// if the bumped fee is higher than the balance, then set the bumped
fee to
// be equal to the balance to ensure the output value is not negative
balance := btcutil.Amount(tx2.Tx.TxOut[changePosition].Value)

// todo: revise this as this means we will end up with output with
value 0 that will be rejected by bitcoind as dust output.
if bumpedFee > balance {

rl.logger.Debugf("the bumped fee %v Satoshis for the second tx
is more than UTXO amount %v Satoshis",

bumpedFee, balance)
bumpedFee = balance

}

Recommendation

Do not force the utilization of all the previously selected inputs to avoid
capping the replacement transaction fee value. Instead, keep the input from
the first checkpoint segment transaction and choose new inputs to account
for the replacement transaction fee.

Make sure the replacement transaction follows the requirements listed in
Bitcoin's Replace-by-Fee Policy.

Status

Fixed in pull request #232, #252 and #259. The function computes the
required RBF fee, and the transaction is re-funded if necessary.

https://github.com/bitcoin/bitcoin/blob/master/doc/policy/mempool-replacements.md
https://github.com/babylonlabs-io/vigilante/pull/232
https://github.com/babylonlabs-io/vigilante/pull/252
https://github.com/babylonlabs-io/vigilante/pull/259

© Coinspect 2025 63 / 118

BP2�020
Slashing can be avoided with unbonding
transactions

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

vigilante/btcstaking-tracker/btcslasher/slasher_utils.go

Description

Any staker has a chance of avoiding slashing using the unbonding transaction.

The issue happens because the Vigilante fails to detect an unbonding
transaction during the slashing process.

When a slashing event is triggered in Babylon, the slasher submits both the
slashing and unbonding slashing transactions.

txHash1, err1 := bs.sendSlashingTx(fpBTCPK, extractedfpBTCSK, del,
false)
txHash2, err2 := bs.sendSlashingTx(fpBTCPK, extractedfpBTCSK, del,
true)

© Coinspect 2025 64 / 118

The issue arises through an implicit race condition. The BTC node connected
to the vigilante may accept the slashing transaction and reject the unbonding
slashing as it cannot accept both. However, the unbonding transaction (not
slashing) may be already sent to other nodes on the network by the
equivocating finality provider. In this case, the miner will accept the first
transaction. In the event of such a transaction being the unbonding
transaction, the vigilante will not send the unbonding slashing transaction,
allowing the malicious finality provider to avoid being slashed.

Recommendation

Monitor the inclusion of the slashing transaction in a block and notify the
maintainers if it is not detected within a specified timeframe. Note that this
may require a database.

If an unbonding transaction is found in a Bitcoin block, check whether the
unbonding slashing transaction must be sent.

Status

Fixed in pull request #209. When slashing, the vigilante will now wait for the
confirmation of one of the two transactions sent. If neither is confirmed, it will
attempt to send them again.

https://github.com/babylonlabs-io/vigilante/pull/209

© Coinspect 2025 65 / 118

BP2�021
Lack of transaction retry mechanism may
result in delayed transactions

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

vigilante/submitter/relayer/relayer.go

Description

The Vigilante Submitter's relayer lacks a retry mechanism for error handling
during Bitcoin transaction creation and submission, possibly delaying
checkpoint transactions.

The Submitter will only re-attempt to submit the checkpoint once the
configured PollingIntervalSeconds has elapsed.

Additionally, Coinspect identified several transaction validation checks in the
buildTxWithData function that may be imposing unnecessary constraints on
the transactions, which can cause the transaction's submission to fail.

The buildTxWithData function is responsible for creating the two transactions
needed to submit Babylon checkpoints to Bitcoin. Below are some validation

© Coinspect 2025 66 / 118

checks extracted from this function, which impose restrictions not strictly
required by Bitcoin.

minRelayFee := rl.calcMinRelayFee(txSize)
if hasChange && changeAmount < minRelayFee {
 return nil, fmt.Errorf("the utxo value is insufficient for relaying
the transaction. Required: %v, Have: %v", minRelayFee, changeAmount)
}

// Ensuring the transaction fee does not exceed the utxo value
if hasChange && changeAmount < txFee {
 return nil, fmt.Errorf("the utxo value is insufficient for paying
the calculated transaction fee. Required: %v, Have: %v", txFee,
changeAmount)
}

// Ensuring change does not fall below the dust threshold
change := changeAmount - txFee
if hasChange && change < dustThreshold {
 return nil, fmt.Errorf("change amount %v is less than the dust
threshold %v", change, dustThreshold)
}

As an example, the final if block calculates a change variable by subtracting
the transaction fee from the change amount and throws an error if this value
is below the dust threshold. Additionally, the error message suggests a
possible miscalculation of the change amount.

Recommendation

Implement a mechanism to retry Bitcoin transactions when errors occur.
Alternatively, shorten the polling interval and provide clear documentation
explaining the need for a reduced interval.

Review the transaction validations and remove those that are unnecessary.
Otherwise, consider adding explanatory comments to clarify their intent.
Consider enforcing only the validation requirements required by Bitcoin nodes
for standard transactions.

Status

Fixed in pull request #229. The unnecessary checks were removed. The retry
mechanism has not been made more aggressive, as there is no necessity for
checkpoints to be included more quickly.

https://github.com/babylonlabs-io/vigilante/pull/229

© Coinspect 2025 67 / 118

BP2�022
Single submitter can submit all
checkpoints due to delayed sealed
checkpoint processing

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

vigilante/submitter/submitter.go

Description

A modified Vigilante submitter can submit SEALED checkpoints ahead of those
using the standard version. This issue has no impact in the current Babylon
system as there are no rewards for submitting checkpoints. Nevertheless, it
must be taken into account if a reward system is put in place.

Currently, submitters only process the first pending SEALED checkpoint and do
not submit the next one until Babylon updates its status to SUBMITTED. This
allows an opportunistic submitter to get ahead by submitting all available
SEALED checkpoints first.

The PollSealedCheckpoints function below retrieves SEALED checkpoints,
returning only the oldest one:

© Coinspect 2025 68 / 118

func (pl *Poller) PollSealedCheckpoints() error {
res, err :=

pl.querier.RawCheckpointList(checkpointingtypes.Sealed, nil)
if err != nil {

return err
}
sealedCheckpoints := res.RawCheckpoints

if len(sealedCheckpoints) == 0 {
return nil

}

// Ensure the oldest checkpoint is selected
oldestCkpt := sealedCheckpoints[0]
for _, ckpt := range sealedCheckpoints {

if oldestCkpt.Ckpt.EpochNum > ckpt.Ckpt.EpochNum {
oldestCkpt = ckpt

}
}

pl.rawCkptChan <- oldestCkpt

return nil
}

This function runs at intervals defined by PollingIntervalSeconds, which
defaults to 60 seconds unless overridden:

ticker := time.NewTicker(time.Duration(s.Cfg.PollingIntervalSeconds) *
time.Second)
for {
 select {
 case <-ticker.C:
 s.logger.Info("Polling sealed raw checkpoints...")
 err := s.poller.PollSealedCheckpoints()
...

As a result, submitters will only attempt to send the next checkpoint once the
Vigilante reporter module confirms the previous one to Babylon.

Recommendation

Allow submitting of multiple SEALED checkpoints at once.

Status

Acknowledged. When reporting this issue, Babylon documentations described
a system of rewards that would have been vulnerable by the problem

© Coinspect 2025 69 / 118

described. Babylon Labs team has updated the documentation and stated
rewards for checkpoint submitters will not be distributed in the near term.

© Coinspect 2025 70 / 118

BP2�023
Submitter transactions may not be relayed
due to very low change output value

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

vigilante/submitter/relayer/relayer.go

Description

When a transaction is the first segment of a Babylon checkpoint and lacks a
change output, the submitter's relayer module enforces the addition of a 546-
sat change output, which meets the current threshold for dust values. While
this value is regarded as safe, there is a risk of such transactions being
rejected if the dust threshold increases. Any transaction containing outputs
deemed as dust will be classified as non-standard and will not be relayed.

The 546-sat dust threshold is derived from the default fee rate of 3000
sat/kvB, as outlined in the Bitcoin node's dust threshold calculation.

This default rate of 3 sat/byte is documented in the Bitcoin node, which
serves as the reference value. Although many nodes adhere to this setting,
there is no consensus requirement for them to do so. Consequently, nodes

https://github.com/bitcoin/bitcoin/blob/9d892099378b2ad5f52220403bdeae43c61d6955/src/policy/policy.cpp#L36
https://github.com/bitcoin/bitcoin/blob/9d892099378b2ad5f52220403bdeae43c61d6955/src/policy/policy.cpp#L36

© Coinspect 2025 71 / 118

that enforce a higher fee rate may reject transactions with such low-value
outputs.

This issue is currently classified as informational since the 3 sat/byte rate is
widely adopted. However, it is prudent to account for the possibility of future
limitations arising from an increased default fee rate.

Below is a code snippet from the buildTxWithData function, demonstrating the
use of the minimum accepted output value for the change output:

dustThreshold btcutil.Amount = 546
...
changeOutput := wire.NewTxOut(int64(dustThreshold), changePkScript)
rawTxResult.Transaction.AddTxOut(changeOutput)

Recommendation

Consider increasing the change output value to provide greater resilience
against future changes in network fee requirements.

Status

Acknowledged. The Babylon Labs team is aware that the parameter might
change and will provide updates to the vigilante in case the parameter is
modified for the Bitcoin chains.

https://github.com/bitcoin/bitcoin/blob/9d892099378b2ad5f52220403bdeae43c61d6955/src/policy/policy.cpp#L36

© Coinspect 2025 72 / 118

BP2�024
Well-positioned attacker can obtain critical
signatures

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

covenant-emulator

finality-provider

Description

An attacker well positioned in the network can observe a finality provider's
private-key protecting passphrase and request signatures directly from the
eotsd manager. A similar problem can be found in the communications
between the covenant-emulator and the remote signer.

This puts the finality providers and covenant members' signatures at risk.
Note that protecting the passphrases used or the secret keys is not enough if
attackers can use the signing servers as oracles to sign arbitrary data.

To understand the issue, consider how the finality-provider repository works
as a whole: it contains a finality-provider proper package and an EOTS
Manager run by a daemon called the eotsd. While the finality provider proper

© Coinspect 2025 73 / 118

is in charge of the logic to synchronizing with a Babylon node; the eotsd is
supposed to handle the signing and generation of public randomness itself.

While this schema is sound in theory, in the current implementation the eotsd
and the finality-provider both have access to the keyring and share a
passphrase to unlock it. The passphrase is observable to an attacker positioned
in the network: it is shared via an insecure transport between the two.

func NewEOTSManagerGRpcClient(remoteAddr string)
(*EOTSManagerGRpcClient, error) {

conn, err := grpc.NewClient(remoteAddr,
grpc.WithTransportCredentials(insecure.NewCredentials()))

if err != nil {
return nil, fmt.Errorf("failed to build gRPC connection

to %s: %w", remoteAddr, err)
}

...

// NewFinalityProviderServiceGRpcClient creates a new GRPC connection
with finality provider daemon.
func NewFinalityProviderServiceGRpcClient(remoteAddr string)
(*FinalityProviderServiceGRpcClient, func() error, error) {

conn, err := grpc.NewClient(remoteAddr,
grpc.WithTransportCredentials(insecure.NewCredentials()))

if err != nil {
return nil, nil, fmt.Errorf("failed to build gRPC

connection to %s: %w", remoteAddr, err)
}

The same architecture is used for the covenant committee signatures, which
uses the remote signer as a black box to request signatures for delegations.

Another risk is that the programs that act as signature requesters (i.e:
finality-provider and covenant-emulator) do not authenticate the connection
to the blockchain node that triggers a request. This is another vector via
which an attacker could request arbitrary signatures, as they could provide
the signature requesters with fake events from the blockchain.

Recommendation

Allow operators of finality providers and committee members to have a
secure configuration between all hosts involved in the signature process. All
messages between the nodes, the signature requester and the signer should
be authenticated and encrypted. Coinspect recommends that a two-pronged
strategy is used: one for programs specifically made for the signing process
that can support authentication at the application level, and another for
blockchain nodes which are harder to modify to support safe channels.

© Coinspect 2025 74 / 118

For communications between the finality-provider and the eotsd manager,
and covenant-emulator and covenant-signer, Coinspect recommends
supporting HMAC-based integrity checks with a shared secret between
the hosts. Alternatively, authentication via message signatures can be
used.
For communications between the blockchain nodes and the finality-
provider and covenant-emulator, Coinspect recommends setting up SSH
tunneling.

For SSH Tunneling, the responsibility to implement it would fall entirely on the
operators of the programs.

Additionally and as a defense in depth mechanism, HTTPs should be
supported for communications whenever possible.

Status

Fixed in #337, which removes the passing of the passphrase via the network.
Additionally, PRs #109 for the covenant emulator and #364 for the finality
provider feature HMAC-based authentication for internal communications.

https://github.com/babylonlabs-io/finality-provider/pull/337
https://github.com/babylonlabs-io/covenant-emulator/pull/109
https://github.com/babylonlabs-io/finality-provider/pull/364

© Coinspect 2025 75 / 118

BP2�025
Finality provider can miss signature due to
overflow

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

babylon/crypto/eots/eots.go

Description

If the commitment generated when creating a finality signature via signHash
overflows when considered modulo order(secp256k1), the process will fail and
the signature will not be generated. Future attempts will also fail as the
process is entirely deterministic.

Note that the likelihood of this issue triggering is vanishingly small, around 1 /
(2**256-1 - order(secpt256k1).

Recommendation

© Coinspect 2025 76 / 118

Due to the small likelihood of the issue triggering in practice, document this
potential scenario so that the risk is known for finality providers.

Status

Acknowledged. Babylon Labs team will document the risk.

© Coinspect 2025 77 / 118

BP2�026
Stake can get stuck with transactions
bigger than 8 kilobytes

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

covenant-emulator/covenant-signer/config/server.go

Description

Staking transactions with a size bigger than 8 kilobytes will not be processed
as the RemoteSigner caps the data it receives at 8 kilobytes. The signing
request involves several complete transactions and keys which can easily
surpass the 8 kilobytes limit:

type SigningRequest struct {
StakingTx *wire.MsgTx
SlashingTx *wire.MsgTx
UnbondingTx *wire.MsgTx
SlashUnbondingTx *wire.MsgTx
StakingOutputIdx uint32
SlashingPkScriptPath []byte
StakingTxUnbondingPkScriptPath []byte
UnbondingTxSlashingPkScriptPath []byte

© Coinspect 2025 78 / 118

FpEncKeys []*asig.EncryptionKey
}

Consider the loop in the covenant-emulator that uses a signer to sign the
transactions. The signer implementation is an HTTP server that has set the
MaxContentLength as 8 kilobytes:

func DefaultServerConfig() *ServerConfig {
return &ServerConfig{

Host: "127.0.0.1",
Port: 9791,
WriteTimeout: 15,
ReadTimeout: 15,
IdleTimeout: 120,
MaxContentLength: 8192,

}
}

As such, SigningRequests that do not fit the MaxContentLength of the signer will
not get processed. If the delegator already included their transaction in
Bitcoin, the stake would get stuck until it gets expired.

Recommendation

Increase the default MaxContentLength so that it is capable of processing all
reasonable SigningRequests.

Because Bitcoin transactions have no defined size limit (except for the block
size) and the signer communicates via a HTTP with a single, trusted, client, it
is recommended to put a limit of 10Mb; which should be more than enough
for the information carried in the request.

Status

Fixed in pull request #108.

https://github.com/babylonlabs-io/covenant-emulator/pull/108/

© Coinspect 2025 79 / 118

BP2�027
Stake can get stuck due to race condition
when delegating to a slashed finality
provider

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

babylon/crypto/eots/eots.go

Description

Stake can get stuck when a new delegator includes their staking transaction
into Bitcoin and calls CreateBTCDelegation while the finality provider they have
delegated to is slashed.

This is due to the fact that delegating to a slashed finality provider will cause
the CreateBTCDelegation transaction to fail on Babylon:

// 4. Check finality providers to which message delegate
// Ensure all finality providers are known to Babylon, are not slashed
for _, fpBTCPK := range
parsedMsg.FinalityProviderKeys.PublicKeysBbnFormat {
 // get this finality provider
 fp, err := ms.GetFinalityProvider(ctx, fpBTCPK)

© Coinspect 2025 80 / 118

 if err != nil {
 return nil, err
 }
 if fp.IsSlashed() {
 return nil, types.ErrFpAlreadySlashed.Wrapf("finality key: %s",
fpBTCPK.MarshalHex())
 }
}

Nevertheless, the delegator might have sent the Bitcoin transaction to
delegate before the finality provider was slashed. If this happened, the
delegator would get their stake locked by not fault of their own.

Recommendation

Document this risk so that delegators are aware of it.

Status

Fixed in PR #602. Warnings have been added to the documentation.

https://github.com/babylonlabs-io/babylon/pull/602

© Coinspect 2025 81 / 118

BP2�028
Change in parameters leads to slashing
being missed

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

babylon/x/btcstaking/keeper/grpc_query.go

Description

A change in the params.CovenantQuorum necessary to consider a delegation as
active will lead to missing slashings as the vigilante will use the
BTCDelegation query to know the status of a delegation, but this query uses
the current parameters to assert the status of the delegation instead of the
delegation's parameters.

To further understand the issue, consider that the vigilante must be able to
detect unbonding or other stake-spending transactions to be able to report
them back to the Babylon chain. This process is done by the
reportUnbondingToBabylon method in the StakingEventWacher of the vigilante.

active, err := sew.babylonNodeAdapter.IsDelegationActive(stakingTxHash)
if err != nil {
 return fmt.Errorf("error checking if delegation is active: %w",

© Coinspect 2025 82 / 118

err)
}
verified, err :=
sew.babylonNodeAdapter.IsDelegationVerified(stakingTxHash)
if err != nil {
 return fmt.Errorf("error checking if delegation is verified: %w",
err)
}
if !active && !verified {
 sew.logger.Debugf("cannot report unbonding. delegation for staking
tx %s is no longer active", stakingTxHash)

 return nil
}
...

Note that the process will not continue if the delegation is not active or
verified. Both of the queries are done via the same underlying GRPC query to
the Babylon node: BTCDelegation, implemented in
babylon/x/btcstaking/keeper/grpc_query.go. In particular, the status is fetched
via the GetStatus method, which takes a covenantQuorum parameter:

status := btcDel.GetStatus(
 k.btclcKeeper.GetTipInfo(ctx).Height,
 k.GetParams(ctx).CovenantQuorum,
)

Note that GetParams(ctx) will fetch the latest possible parameters available.
GetStatus will return PENDING if the delegation's covenant signatures do not
reach the passed quorum:

// we are still pending covenant quorum
if !d.HasCovenantQuorums(covenantQuorum) {
 return BTCDelegationStatus_PENDING
}

...

func (d *BTCDelegation) HasCovenantQuorums(quorum uint32) bool {
return len(d.CovenantSigs) >= int(quorum) &&

d.BtcUndelegation.HasCovenantQuorums(quorum)
}

This is a discrepancy with regards to delegation activation according to the
Babylon node, which will consider a delegation active as long as it reached
the covenant signatures required by the parameters when the delegation was
created, as seen in AddBTCDelegationInclusionProof or AddCovenantSigs, which
fetch the parameters according to the parameters used to create the
delegation.

// in AddBTCDelegationInclusionProof or AddCovenantSigs
btcDel, params, err := ms.getBTCDelWithParams(ctx, req.StakingTxHash)

© Coinspect 2025 83 / 118

func (ms msgServer) getBTCDelWithParams(
ctx context.Context,
stakingTxHash string) (*types.BTCDelegation, *types.Params,

error) {
btcDel, err := ms.GetBTCDelegation(ctx, stakingTxHash)

 ...
bsParams := ms.GetParamsByVersion(ctx, btcDel.ParamsVersion)

 ...
}

All in all, this means that a delegation can be considered active by the node
when it reaches its params.CovenantQuorum signatures; but it can be considered
pending by the vigilante if the params.CovenantQuorum at the time of the query
has increased. This leads the vigilante to consider stake-spending
transactions irrelevant if the params.CovenantQuorum is increased.

Note that to make matters worse, the covenant-emulator will not send further
signatures if the delegations has received enough signatures according to the
params used during the delegation creation, as seen in covenant-
emulator/covenant/covenant.go:

// 2. the quorum is already achieved, skip sending more sigs
stakerPkHex :=
hex.EncodeToString(schnorr.SerializePubKey(btcDel.BtcPk))
if btcDel.HasCovenantQuorum(params.CovenantQuorum) {
 ce.logger.Error("covenant signatures already fulfilled",
 zap.String("staker_pk", stakerPkHex),
 zap.String("staking_tx_hex", btcDel.StakingTxHex),
)
 continue
}

Recommendation

Make the GPRC query use the same logic than the consensus layer to check if
a transaction is active. Namely, check with the params used during delegation
creation.

Status

Fixed in pull request #512. The BTCDelegation query now uses the
params.ConvenatQuorum at the point of creation of the delegation.

https://github.com/babylonlabs-io/babylon/pull/512

© Coinspect 2025 84 / 118

BP2�029
Attacker can avoid slashing in BTC by using
wrapped messages

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

vigilante/btcstaking-tracker/btcslasher/slasher.go

Description

An attacker can send their AddFinalitySigMsgs in a wrapped-message such as
authz.MsgExec or wasm.MsgExecuteContract to avoid detection of the vigilante
process that is in charge of monitoring calls to AddFinalitySig and slash
finality providers that misbehave.

The root cause of the issue is that the query performed by the btcslasher
module of the vigilante assumes that the calls to AddFinalitySig will be the
message.action in the transaction's event:

messageActionName = "/babylon.finality.v1.MsgAddFinalitySig"
...
queryName := fmt.Sprintf("tm.event = 'Tx' AND message.action='%s'",
messageActionName)
// subscribe to babylon fp slashing events

© Coinspect 2025 85 / 118

bs.finalitySigChan, startErr =
bs.BBNQuerier.Subscribe(txSubscriberName, queryName)
if startErr != nil {
 return
}

Nevertheless, wrapped messages have as the message.action the action of the
topmost, outer message. For example, a message dispatched via a
CosmosWasm contract has as action "/cosmwasm.wasm.v1.MsgExecuteContract,
and a authorized message via the authz module has as its action
"/cosmos.authz.v1beta1.MsgExec".

This means the btcslasher will not send these wrapped messages to the
finalitySigChan. This in turn avoids further processing, which should discover
equivocations by the finality provider and a slashing transaction to be sent to
Bitcoin via the slashingEnforcer method.

Recommendation

Do not rely on message.action as an indicator of the execution of certain
messages. Instead, add custom events to the AddFinalitySig method and
subscribe to those events. Events are emitted regardless of how the message
was executed.

Status

Fixed in pull request #234. The strategy to detect misbehavior has been
changed to polling. The vigilante now queries periodically the Babylon node
for evidence of misbehavior.

https://github.com/babylonlabs-io/vigilante/pull/234

© Coinspect 2025 86 / 118

BP2�030
Attacker can post fake stake in Babylon by
forking Bitcoin

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

vigilante/btcstaking-tracker/btcslasher/slasher.go

Description

The DefaultConfirmationDepth of the Babylon chain for Bitcoin is only 10. With
current network conditions and hashing prices, the cost of performing a
double-spend against Babylon is between $1M and $10M USD. The Babylon
chain has, as of February 2025, around $6B USD in TVL. This large asymmetry
between the cost of performing an attack and the total value protected by
Babylon makes it reasonable for a well-funded attacker to perform a double
spend against Babylon.

The concrete attack would work as follows: an attacker with enough hashing
power could present to Babylon a staking transaction and wait for it to be
confirmed according to Babylon's light client. Then, they would post a fork to
Bitcoin where they already spent that staking transaction. From Babylon's
point of view, that delegation is active and valid and allows the finality

© Coinspect 2025 87 / 118

provider to vote. On the other hand, the staker cannot be slashed: the staking
transaction has been re-organized out of Bitcoin's mainchain.

The exact economic incentives at play are hard to predict, as an attacker can
have several motivations to carry out the attack. The most direct is to
perform a short against Babylon's tokens or in a prediction market. Note too
that they need not recoup their expense only from Babylon: they could attack
other vulnerable protocols as well and pool the profits of attacking all
protocols in Bitcoin that are vulnerable.

The cost of the attack was calculated using the current Bitcoin hashrate (at
around �800M TH/s) and the nicehash average price for the SHA256AsicBoos
miner (around 0.54 BTC/EH/day).

Bitcoin hashrate: �800 EH/s (source)
Cost of 1 EH per hour: �0.0225 BTC (source, SHA256AsicBoost)
Cost of 400 EH per hour (enough for 50%�� 400 � 0.0225 � 9 BTC

So for two hours (approximating 10 confirmations and some surplus time) the
cost is 18 BTC. At a price hovering around �100K per BTC, that is 1.8M USD.
Crypto51 estimates around double the cost at �4M USD.

Note that this estimation is rather lax: it assumes a two-hour window, when
the attacker would need only 10 confirmations, which should be a window of
around 100 minutes. On the other hand, the current total hash rate of Bitcoin
is slightly higher, but can vary with time and experience drops. This
calculation is also abstract because it does not take into account the
availability of said hashing power. It is nevertheless useful for illustrative
purposes.

It is also important to note that an attacker does not necessarily need 50% to
be successful. Consider an attack from big Bitcoin pools against Babylon: The
two biggest pools have around �23% of hashing power (over last 2Y�. If they
combine their hashing power and get 46% of the total, they would have a 75%
chance of successfully executing an attack against Babylon.

Recommendation

Increase the confirmation time for Bitcoin. While 10 is a safe-limit for most
transactions, due to the incentives to attack a high-value chain the limits need
to be more conservative.

This script can be used to calculate the amount of confirmations given a risk
tolerance. With q being the amount of hashing power an attacker can control
and z is the amount of confirmations that are required.

https://www.blockchain.com/explorer/charts/hash-rate
https://www.nicehash.com/pricing
https://www.blockchain.com/explorer/charts/pools

© Coinspect 2025 88 / 118

>>> def attacker_success_probability(q, z):
... p = 1.0 - q
... lambd = z * (q / p)
... s = 1.0
... for k in range(z + 1):
... poisson = math.exp(-lambd)
... for i in range(1, k + 1):
... poisson *= lambd / i
... s -= poisson * (1 - (q / p) ** (z - k))
... return s

Status

Babylon stated that for their mainchain the ConfirmationDepth parameter will
be set to 30.

© Coinspect 2025 89 / 118

BP2�031
Chain bloated by checkpoints that are
never forgotten

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

babylon/x/checkpointing/keeper/keeper.go

Description

The SetCheckpointForgotten method does not call the
AfterRawCheckpointForgotten hook. This in turn prevents the pruning of data
from the monitor's store of checkpoints, causing blockchain bloat.

The issue is in the SetCheckpointForgotten implementation, which never calls
the hook. Compare this to the implementation of SetCheckpointFinalized,
which does:

// invoke hook, which is currently subscribed by ZoneConcierge
if err := k.AfterRawCheckpointFinalized(ctx, epoch); err != nil {
 k.Logger(sdkCtx).Error("failed to trigger checkpoint finalized hook
for epoch %v: %v", ckpt.Ckpt.EpochNum, err)
}

© Coinspect 2025 90 / 118

Recommendation

Add a call to AfterRawCheckpointForgotten in the SetCheckpointForgotten
method.

Status

Fixed in pull request #540. The hook is now called.

https://github.com/babylonlabs-io/babylon/pull/540

© Coinspect 2025 91 / 118

BP2�032
Users may have their transactions rejected
due to the generation of dust outputs

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

babylon-wallet-connector/src/core/utils/mempool.ts

Description

Users may waste time if their transactions are rejected by nodes due to non-
standard formatting. This happens because the library does not ensure proper
handling of dust change outputs, potentially generating non-standard
transactions.

The getFundingUTXOs function is designed to select the minimum number of
inputs required to meet a specified amount. However, it does not verify
whether the excess amount (change) surpasses the dust threshold. As a
result, transactions containing dust outputs are classified as non-standard and
will be rejected by most nodes.

if (amount) {
 let sum = 0;
 let i;

© Coinspect 2025 92 / 118

 for (i = 0; i < confirmedUTXOs.length; ++i) {
 sum += confirmedUTXOs[i].value;
 if (sum > amount) {
 break;
 }
 }
 if (sum < amount) {
 return [];
 }
 sliced = confirmedUTXOs.slice(0, i + 1);
}

Coinspect was unable to determine where this function is executed, making it
difficult to assess the exact impact.

Recommendation

Ensure that the resulting change does not fall below the dust threshold.
Additionally, implement checks to confirm that the generated transaction
adheres to the standard transaction policy.

Status

Fixed in PR #264. The mempool component was removed.

https://github.com/bitcoin/bitcoin/blob/66aa6a47bd8efd7e0448319c74be3ee62caa777a/src/policy/policy.cpp
https://github.com/babylonlabs-io/wallet-connector/pull/264

© Coinspect 2025 93 / 118

BP2�033
Unchecked user input allows retrieving
wrong global parameters

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

btc-staker/cmd/stakercli/daemon/daemoncommands.go:401

btc-staker/cmd/stakercli/transaction/transactions.go:695

Description

Users can provide an incorrect block height for the staking transaction, which
can lead to the staker CLI retrieving the wrong versioned global parameters.
This may result in crafting invalid requests or transactions that will be rejected
by the nodes.

The stakeFromPhase1TxBTC and createPhase1UnbondingTransaction functions
allow users to specify the block height at which the staking transaction was
included. Below is a snippet from the stakeFromPhase1TxBTC function:

blockHeighTxInclusion := ctx.Uint64(txInclusionHeightFlag)
if blockHeighTxInclusion == 0 {

resp, err := client.BtcTxDetails(sctx, stakingTransactionHash)
if err != nil {

© Coinspect 2025 94 / 118

return fmt.Errorf("error to get btc tx and block data
from staking tx %s: %w", stakingTransactionHash, err)

}

blockHeighTxInclusion = uint64(resp.Blk.Height)
}

This block height is then used to fetch the versioned global parameters
needed for creating the delegation request or unbonding transaction:

paramsForHeight :=
globalParams.GetVersionedGlobalParamsByHeight(blockHeighTxInclusion)
if paramsForHeight == nil {
 return fmt.Errorf("error getting param version from global params
%s with height %d", inputGlobalParamsFilePath, blockHeighTxInclusion)
}

Therefore, since the CLI fails to validate the provided block height, providing
an incorrect block height would cause the CLI to fetch the wrong global
parameters, leading to crafting invalid requests or transactions.

Recommendation

Instead of relying on user-provided input, directly retrieve the transaction's
block height from the node to prevent errors.

Status

Fixed in PR #160. The staking transaction height is no longer mandatory,
making the default safe.

https://github.com/babylonlabs-io/btc-staker/pull/160

© Coinspect 2025 95 / 118

BP2�034
Fixed request ID in Keystone wallet
requests prevents request-response
association

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

babylon-wallet-connector/src/core/wallets/btc/keystone/provider.ts

Description

The wallet connector library uses a fixed requestId for signature requests to
Keystone wallets, preventing proper request-response association.

The snippet below, from the signMessage function, shows the usage of a fixed
requestId and origin for every request.

const ur = this.dataSdk.btc.generateSignRequest({
 requestId: "7afd5e09-9267-43fb-a02e-08c4a09417ec",
 signData: Buffer.from(message, "utf-8").toString("hex"),
 dataType: KeystoneBitcoinSDK.DataType.message,
 {
 },

© Coinspect 2025 96 / 118

],
});

The requestId is intended to link responses to their corresponding requests.
However, since the code does not verify whether the response matches the
original requestId, messages and signatures cannot be reliably associated.

Additionally, accepting and trusting arbitrary origin values is a poor security
practice, as they can be spoofed. Coinspect was unable to find Keystone's
documentation on origin handling and did not have a Keystone wallet device
to test potential exploits. Ensuring the security of wallets integrating with
Babylon is outside the scope of this project.

Recommendation

Use a unique requestId for each signing request and validate that request and
response IDs match.

Assess the impact of using an arbitrary origin in Keystone wallet signature
requests.

Status

Fixed in PR #264. The ID is now a UUIDv4.

https://github.com/babylonlabs-io/wallet-connector/pull/264

© Coinspect 2025 97 / 118

BP2�035
Malicious external API can crash staking
service

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

staking-api-service/internal/shared/http/client/http_client.go

Description

The staking-api-service HTTP client does not set a limit to the amount of
data read from the host it is sending to request to. This means that if the host
is malicious, it can attempt to crash the API by sending a big amount of data
and fill the memory of the system running the Staking API.

The sendRequest method uses the subjacent's net/http Client Do method to
make requests, but fails to limit the read from resp.Body, instead relying only
on a timeout to close the connection.

resp, err := client.GetHttpClient().Do(req)
...
if err := json.NewDecoder(resp.Body).Decode(&output); err != nil {

© Coinspect 2025 98 / 118

A malicious API can stream as much data as allowed before the timeout
expires. This data will be held in memory. If the API is reached on-demand via
one the Staking API routers, like the ordinals API is, a malicious operator of
the API can start an arbitrary number of connections that all stream a big
amount of data at the same time, eventually leading to a Staking API crash.

Recommendation

Use io.LimitReader on the body before passing it to json.NewDecoder.

Status

Fixed in PR #246. An io.LimitReader of 10 megabytes max will be passed to
the decoder.

https://github.com/babylonlabs-io/staking-api-service/pull/246

© Coinspect 2025 99 / 118

BP2�036
Inability to replay a single unprocessable
message can prevent API server from
starting

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

staking-api-service/cmd/staking-api-
service/scripts/replay_unprocessed_messages.go

Description

Coinspect observed that an error during the replay of unprocessable
messages at server startup will prevent the server from launching.

The API service provides a mechanism to replay stored UnprocessableMessages
into the queues. If the server is set to start with the replayFlag option, it will
run the following function during server startup. Should an error occur, the
function returns an error and immediately stops the reprocessing of pending
messages.

func ReplayUnprocessableMessages(ctx context.Context, cfg
*config.Config, queues *v2queue.Queues, db dbclient.DBClient) (err

© Coinspect 2025 100 / 118

error) {
 ...

// Process each unprocessable message
for _, msg := range unprocessableMessages {

var genericEvent GenericEvent
if err := json.Unmarshal([]byte(msg.MessageBody),

&genericEvent); err != nil {
return errors.New("failed to unmarshal event

message")
}

// Process the event message
if err := processEventMessage(ctx, queues,

genericEvent, msg.MessageBody); err != nil {
return errors.New("failed to process message")

}

// Delete the processed message from the database
if err := db.DeleteUnprocessableMessage(ctx,

msg.Receipt); err != nil {
return errors.New("failed to delete

unprocessable message")
}

}

This error is caught by the following snippet in the main function at
cmd/staking-api-service/main.go, which will immediately halt the server's
operations.

if cli.GetReplayFlag() {
 log.Info().Msg("Replay flag is set. Starting replay of
unprocessable messages.")

 err := scripts.ReplayUnprocessableMessages(ctx, cfg, v2queues,
dbClients.SharedDBClient)
 if err != nil {
 log.Fatal().Err(err).Msg("error while replaying unprocessable
messages")
 }
 return
}

Since most API servers are configured to run unattended, those set to replay
unprocessable messages are likely to attempt it again, causing continuous
crashes until a human operator intervenes and configures the server to run
without these options or clears conflictive unprocessable messages in the
database.

Recommendation

The server should continue its operations regardless of the outcome of the
ReplayUnprocessableMessages function.

© Coinspect 2025 101 / 118

Status

Acknowledged. The Babylon Labs team stated that they were not planning to
run the script while the server is also functioning.

© Coinspect 2025 102 / 118

BP2�037
Generated protobuf code cannot be
checked for integrity

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

babylon-proto-ts

Description

The contents of the babylon-proto-ts repository cannot be recreated with the
given scripts found in the repository. This means that users cannot double
check the integrity of the generated files. An attacker can leverage this
seemingly auto-generated code to hide exploits. See the attack on XZ Utils
for an example.

Recommendation

Specify a commit in babylon-proto-ts scripts so that the code can be
regenerated and matched for integrity checks.

https://en.wikipedia.org/wiki/XZ_Utils_backdoor

© Coinspect 2025 103 / 118

Status

Fixed in PR #22. The project now establishes the precise Babylon commit
from which the files are generated, making integrity checks viable.

https://github.com/babylonlabs-io/babylon-proto-ts/pull/22

© Coinspect 2025 104 / 118

BP2�038
Bitcoin transactions might be rejected due
to insufficient minimum feerate

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

btc-staking-ts/src/utils/staking/index.ts 241:245

btc-staking-ts/src/utils/fee/index.ts

Description

Transactions created with the btc-staking-ts library are at risk of not being
relayed by nodes if the feerate provided is too low.

The snippet below shows the getWithdrawTxFee function, which adds a buffer
fee function to the base fee.

export const getWithdrawTxFee = (feeRate: number): number => {
 const inputSize = P2TR_INPUT_SIZE;
 const outputSize = getEstimatedChangeOutputSize();
 return (
 feeRate *
 (inputSize +
 outputSize +
 TX_BUFFER_SIZE_OVERHEAD +

© Coinspect 2025 105 / 118

 WITHDRAW_TX_BUFFER_SIZE) +
 rateBasedTxBufferFee(feeRate)
);
};

Such a buffer fee is calculated by the rateBasedTxBufferFee as shown below. If
the feerate falls below the minimum relay rate accepted by most nodes �3
sats/vbyte), this function returns a fixed value of 30 to offset the potential fee
shortfall.

const rateBasedTxBufferFee = (feeRate: number): number => {
 return feeRate <= WALLET_RELAY_FEE_RATE_THRESHOLD
 ? LOW_RATE_ESTIMATION_ACCURACY_BUFFER
 : 0;
};

However, this buffer may not adequately cover the minimum relay feerate
required by most nodes, which could lead to the transaction being rejected. A
similar issue exists in the getStakingTxInputUTXOsAndFees function.

In contrast, the validateStakingTxInputData function only performs minimal
validation of the feeRate parameter, without ensuring it meets the minimum
standard relay rate enforced by most nodes.

if (feeRate <= 0) {
 throw new StakingError(
 StakingErrorCode.INVALID_INPUT, "Invalid fee rate",
);
}

Recommendation

Require a feeRate of at least 3 sats/vbyte instead of relying on a potentially
inadequate buffer.

Status

Fixed in PR #69. The Babylon Labs team added warnings for users of the
library not to set an invalid feeRate. The Babylon Labs team prioritizes
flexibility for users of the library, so it was not desired to limit or reject
feeRates that were too low.

Users need to be aware of the implications of setting their feeRate.

https://github.com/babylonlabs-io/btc-staking-ts/pull/69

© Coinspect 2025 106 / 118

BP2�039
Library users can create invalid staking
transactions

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

btc-staking-ts/src/staking/stakingScript.ts

Description

Users of the btc-staking-ts can create staking transactions that will be
rejected by Babylon. This is due to the fact that the exported
StakingScriptData class supports building the staking script with the public
key of different finality providers. Nevertheless, this feature is not supported
by the Babylon node.

The mismatch can be observed in the code of StakingScriptData. Its
constructor takes a list of finalityProviderKeys:

constructor(
 ...
 // A list of public keys without the coordinate bytes corresponding
to the finality providers
 // the stake will be delegated to.

© Coinspect 2025 107 / 118

 // Currently, Babylon does not support restaking, so this should
contain only a single item.
 finalityProviderKeys: Buffer[],
 ...
) {

Note that although it is documented that this should only have a single item,
this invariant is not checked in the library.

If a user mistakenly uses the library with a finalityProviderKeys list of more
than one element, their generated scripts will create invalid staking
transactions, leading to value locked in Bitcoin for the end users.

Recommendation

Generate a runtime error for arrays of length bigger than one until restaking is
enabled at the chain level.

Status

The Babylon Labs team acknowledged the issue but stated that the main
interface for creating transactions will be manager.ts and this will be
documented in the README of the project.

© Coinspect 2025 108 / 118

BP2�040
Attackers can eclipse node and post a fake
Bitcoin chain

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Description

A Babylon node that is syncing to the network is vulnerable to being eclipsed
and fed a Bitcoin chain that is not the canonical. This attack assumes the
attacker can eclipse the victim. A victim that has access to at least one
honest Babylon peer is not affected directly, as their node will panic upon
observing a fork.

Recommendation

A CheckConsistency method can be added to the CLI of the node. This tool
would accept a Bitcoin header hash and a height and would cross-check
against the Babylon light client. This tool can be used as the documented
process to bootstrap a node.

© Coinspect 2025 109 / 118

CheckConsistency should panic the node and print a warning if the node light
client does not match the Bitcoin header provided by the user.

Status

Acknowledged. Babylon Labs team has stated that a possible mitigation for
users is to run the monitor program while syncing their node and use the logs
to reach the same conclusion as the CheckConsistency method would provide.

They are working on documentation that explains this risk to operators and
how to mitigate it exactly via the monitor program.

© Coinspect 2025 110 / 118

BP2�041
Malicious indexer instance can crash
vigilante staking tracker

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

btcstaking-tracker/indexer/indexer.go

Description

A malicious indexer can crash the vigilante staking tracker by sending an
excessive amount of data. Since there's no limit on the data read from the
indexer, this could eventually consume all of the host's memory.

The root cause of this issue was initially described in BP2-035. As shown
below, the GetOutspend method fails to restrict how much data is read from
resp.Body:

resp, err := c.httpClient.Do(req)
...
return json.NewDecoder(resp.Body).Decode(&response)

© Coinspect 2025 111 / 118

While this service is intended for local usen —making exploitation unlikely— a
vigilante might opt to use an untrusted third party.

Recommendation

Apply io.LimitReader to the body before passing it to json.NewDecoder.

Status

Fixed in PR #241.

https://github.com/babylonlabs-io/vigilante/pull/241

© Coinspect 2025 112 / 118

BP2�042
BLS private key exposed at rest

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

app/signer/private.go

Description

During the review of the BLS keystore pull request, Coinspect observed that
the BLS private key remains recoverable from the host itself or a data-backup
of it due to inadequate storage segregation between the key and the
associated passphrase.

Currently, the BLS key is encrypted using a passphrase-derived key provided
by the user and stored on the host. However, the passphrase itself—
potentially even an empty password—is also saved in plaintext in a separate
file. While this setup may prevent an attacker with access only to raw storage
data from recovering the private key, it fails to protect against an adversary
who restores the host's filesystem.

Furthermore, Coinspect identified multiple instances in the codebase
indicating that BLS keys are still referenced within the

© Coinspect 2025 113 / 118

priv_validator_key.json file, including x/checkpointing/client/cli/tx.go and
cmd/babylond/cmd/create_bls_key.go.

Recommendation

Inject the passphrase via an environment variable so that it remains in
memory, thereby segregating it from the private key it is meant to protect.
Consider preventing the usage of empty or easy-to-guess passwords.

Adjust mentions to BLS keys held inside the priv_validator_key.json file
accordingly.

Status

Acknowledged. Babylon Labs team is working on a mitigation for these
problems for future releases.

© Coinspect 2025 114 / 118

BP2�043
Lack of differential testing between
implementations of Bitcoin script libraries

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

btc-staking-ts

babylon/btc-staking

Description

Both the babylon/btc-staking and the btc-staking-ts libraries function as
helper libraries to create and validate Babylon-related Bitcoin transactions.
Nevertheless, none of these projects make use of differential testing to find
potential differences in their implementations.

Recommendation

Improve the test suite by adding differential testing. One possible
implementation is:

© Coinspect 2025 115 / 118

generate random inputs
feed those inputs to both btc-staker, babylon/btcstaking and btc-staking-
ts
check that the scripts or transactions match for the same set of inputs

Status

The Babylon Labs team acknowledged this recommendation and will work
on improving the test suite with differential testing.

© Coinspect 2025 116 / 118

BP2�044
Proof-of-Possession �PoP� allows for reuse

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

babylon/x/btcstaking/types/pop.go

Description

Since PoPs only include a Babylon address and are not tied to a specific
timestamp, application, or use, they could potentially be replayed or reused.
The current safeguard against this is enforcement within Babylon's node code,
such as authentication checks for the staker address and ensuring the staking
transaction is not submitted twice.

Additionally, Babylon supports ECDSA signing for Legacy �P2PKH� addresses.
While BIP�322 acknowledges it as a valid option, it recommends transitioning
to the new PoP signing format for all address types.

Recommendation

https://github.com/bitcoin/bips/blob/master/bip-0322.mediawiki

© Coinspect 2025 117 / 118

Ideally, implement a mechanism that allows users to sign PoPs using clear-text
signing instead of signing a hash. This would enable users to review the exact
content their wallets are signing, improving transparency. As a reference,
consider the Sign-in with Ethereum �SIWE� implementation, which enables
users to prove ownership of their EVM address by signing a clear-text
message.

Additionally, incorporate a nonce and a Babylon-specific tag in PoP
generation to prevent reuse within Babylon or by third parties.

Status

Acknowledged. The Babylon team is aware of the limitations of the current
PoP signing mechanism.

https://docs.login.xyz/general-information/siwe-overview

© Coinspect 2025 118 / 118

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

