

Security Audit Report

Babylon

v1.0

June 11, 2025

1

Table of Contents
Table of Contents​ 2
License​ 4
Disclaimer​ 5
Introduction​ 6

Purpose of This Report​ 6
Codebase Submitted for the Audit​ 6
Methodology​ 8
Functionality Overview​ 8

How to Read This Report​ 9
Code Quality Criteria​ 10
Summary of Findings​ 11
Detailed Findings​ 14

1. Missing TLS credentials and HMAC key in gRPC client enables credential
compromise and MITM attacks​ 14
2. Retrieving staking transactions using incorrect page increments results in skipped
transactions​ 14
3. Missing message size enforcement in DeliverTx enables oversized IBC messages
payload injection​ 15
4. Unbounded growth in historical finality provider rewards leads to state bloat​ 16
5. Insufficient validation of genesis’ RefundableMsgHashes allows malformed entries

16
6. Unsynchronized EOTS private key retrieval causes potential panic and memory
corruption​ 17
7. Passphrase handling in command line arguments​ 18
8. Incomplete BLS key validation​ 18
9. Usage of deprecated x/crisis module allows attackers to DoS the chain​ 18
10. Plaintext password storage for BLS key decryption undermines key confidentiality​

19
11. Unbounded state growth due to unpruned BTC staking gauges​ 20
12. Missing length validation of TransactionKey.Hash in the x/btccheckpointing module​

20
13. Incomplete validation of RawCheckpointWithMeta permits inconsistent genesis
configuration​ 21
14. Unvalidated genesis state in x/mint module leads to chain halt risks​ 21
15. The x/btcstaking module GenesisState lacks complete validation​ 22
16. Incorrect active finality provider validation in the x/finality module GenesisState​ 22
17. Incomplete validation of FinalityProviderDistInfo allows for loss of commission and
rewards​ 23
18. Lack of validation for consecutive EpochNumber assignments at genesis​ 24
19. Missing validation of the Power field of a Validator may result in potential overflows​

2

24
20. Partial validation of Evidence allows invalid public keys and signatures​ 25
21. Invalid LargesBtcReOrg set at genesis may result in an immediate chain halt​ 25
22. Missing validation of FinalityProviderSigningInfo permits unexpected behavior​ 26
23. Incomplete passphrase validation for keyring backends creates a security risk​ 26
24. Missing Period validation allows invalid rewards tracking state​ 27
25. Insufficient EventsPowerUpdateAtHeight validation allows negative amounts to
corrupt power calculations​ 27
26. Insufficient genesis validation allows invalid event tracker height configuration​ 28
27. Missing validation allows gaps in historical rewards and invalid tracker start periods​

28
28. Fee grant allowance not restored during refunds causes silent grant depletion​ 29
29. Upgrade handler channel rate limiting enables denial of service via channel spam​

30
30. Unused FpSlashed function causes unnecessary state growth for slashed finality
providers​ 30
31. Overlapping block scanning leads to performance degradation​ 31
32. Inefficient handling of failing events​ 32
33. Inconsistent error message for passphrase flag​ 32
34. Misleading error message for keyring backend validation​ 33
35. Conflicting tokenfactory conditions​ 33
36. Remove redundant address length validation​ 34
37. Inefficient query implementation with mixed state functions​ 34
38. Prevent setting blocked addresses as withdrawal addresses for incentive rewards​

35
39. Unvalidated DelegationStateUpdate entries permit arbitrary validator address
values​ 35
40. Potential nil pointer dereference when validating BlsMultiSig​ 36
41. The MaxAddressSize constant is excessively large​ 36
42. Lack of sanity checks before subtraction allows negative TotalActiveSat value​ 37
43. Misleading comment for SetRewardTrackerEvent​ 37
44. Unresolved TODOs in the codebase​ 38

3

License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

4

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.​

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT WAS PREPARED EXCLUSIVELY FOR AND IN THE INTEREST OF THE
CLIENT AND SHALL NOT CONSTRUE ANY LEGAL RELATIONSHIP TOWARDS THIRD
PARTIES. IN PARTICULAR, THE AUTHOR AND HIS EMPLOYER UNDERTAKE NO LIABILITY OR
RESPONSIBILITY TOWARDS THIRD PARTIES AND PROVIDE NO WARRANTIES REGARDING
THE FACTUAL ACCURACY OR COMPLETENESS OF THE AUDIT REPORT.

FOR THE AVOIDANCE OF DOUBT, NOTHING CONTAINED IN THIS AUDIT REPORT SHALL BE
CONSTRUED TO IMPOSE ADDITIONAL OBLIGATIONS ON COMPANY, INCLUDING WITHOUT
LIMITATION WARRANTIES OR LIABILITIES.​

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

​
​
​
​
​

This audit has been performed by

Oak Security GmbH

https://oaksecurity.io/ ​
info@oaksecurity.io

5

https://oaksecurity.io/
mailto:info@oaksecurity.io

Introduction

Purpose of This Report

Oak Security GmbH has been engaged by Babylon Labs Ltd. to perform a security audit of
several updates for Babylon Genesis.

The objectives of the audit are as follows:

1. ​ Determine the correct functioning of the protocol, in accordance with the project
specification.

2. ​ Determine possible vulnerabilities, which could be exploited by an attacker.

3. ​ Determine smart contract bugs, which might lead to unexpected behavior.

4. ​ Analyze whether best practices have been applied during development.

5. ​ Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following target:​

Repository https://github.com/babylonlabs-io/babylon

Label Paths referencing this target are prefixed below with babylon:

Scope The scope is restricted to:

●​ The changes applied between v1.1.x and v2.x in
https://github.com/babylonlabs-io/babylon/compare/release/v1.1.x...r
elease/v2.x, reviewed at commit
00763782f728b8a5d4c96d50d3c49be76e33b13b, base
branch at f0a29d60f206268b56992fa50f38a48077eb4f59.

6

https://github.com/babylonlabs-io/babylon
https://github.com/babylonlabs-io/babylon/compare/release/v1.1.x...release/v2.x
https://github.com/babylonlabs-io/babylon/compare/release/v1.1.x...release/v2.x

●​ The x/incentive module reviewed at commit
d95f863e44cd9c0f8279e04e204da60b1112b070

Fixes verified
at commit

3da7d458efddd4f03013cc082f1b4c6cd979ad3c

Note that only fixes to the issues described in this report have been
reviewed at this commit. Any further changes such as additional features
have not been reviewed.

Repository https://github.com/babylonlabs-io/finality-provider

Label Paths referencing this target are prefixed below with
finality-provider:

Scope The scope is restricted to the changes applied in the following pull
requests:

●​ https://github.com/babylonlabs-io/finality-provider/pull/462
reviewed at commit
32eea898b7627706af954db33003de9419d626c9, base
branch at 6bc3ef37e07b6a1ffe468ce6f9f5c66bd79a9c61.

Fixes verified
at commit

0de7af7d65b5a7e9201482031622522deade10ce

Note that only fixes to the issues described in this report have been
reviewed at this commit. Any further changes such as additional features
have not been reviewed.

Repository https://github.com/babylonlabs-io/vigilante

Label Paths referencing this target are prefixed below with vigilante:

Scope The scope is restricted to the changes applied in the following pull
requests:

●​ https://github.com/babylonlabs-io/vigilante/pull/345 reviewed at
commit cb09aef7f3bf7e11b5dbf5dbf15e9c7925b69cde,
base branch at
61880560cba31e80cfe3aad7e895418c340c3598.

Fixes verified
at commit

240b199dbc17142a641025b703b80139ed247702

Note that only fixes to the issues described in this report have been
reviewed at this commit. Any further changes such as additional features
have not been reviewed.

7

https://github.com/babylonlabs-io/finality-provider
https://github.com/babylonlabs-io/finality-provider/pull/462
https://github.com/babylonlabs-io/vigilante
https://github.com/babylonlabs-io/vigilante/pull/345

Methodology
The audit has been performed in the following steps:

1.​ Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2.​ Automated source code and dependency analysis.
3.​ Manual line-by-line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a.​ Race condition analysis
b.​ Under-/overflow issues
c.​ Key management vulnerabilities

4.​ Report preparation

Functionality Overview
Babylon Genesis is a Cosmos SDK-based blockchain that provides two core security-sharing
protocols between Bitcoin and Proof-of-Stake networks:

●​ The Bitcoin timestamping protocol periodically checkpoints Babylon Genesis' state on
the Bitcoin blockchain.

●​ The Bitcoin staking protocol enables Bitcoin holders to provide economic security to
decentralized systems through trustless staking via specialized Bitcoin scripts with
time-locked transactions and slashing conditions enforced through Extractable
One-Time Signatures (EOTS).

Babylon Genesis maintains a Bitcoin light client for transaction verification, uses Vigilante to
relay data between Bitcoin and Babylon Genesis, and supports IBC protocols to extend
Bitcoin's security guarantees to connected blockchain networks.

The scope of the audit is restricted to the codebase submitted for the audit.

8

How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, Partially Resolved,
or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

9

Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Medium-High The codebase comprises several
interconnected components,
including the Cosmos SDK
appchain, Bitcoin Scripts, integration
of third-party Cosmos modules, and
the Vigilante relayer.

Code readability and clarity Medium-High -

Level of documentation Medium-High The client provided detailed
documentation and diagrams.

Test coverage Medium go test reports the following test
coverages for the repositories in
scope:

●​ babylon: 55.60%

●​ finality-provider:
31.60%

●​ vigilante: 37.60%

10

Summary of Findings

No Description Severity Status

1 Missing TLS credentials and HMAC key in gRPC
client enables credential compromise and MITM
attacks

Major Resolved

2 Retrieving staking transactions using incorrect
page increments results in skipped transactions

Major Resolved

3 Missing message size enforcement in DeliverTx
enables oversized IBC messages payload injection

Major Resolved

4 Unbounded growth in historical finality provider
rewards leads to state bloat

Minor Acknowledged

5 Insufficient validation of genesis’
RefundableMsgHashes allows malformed
entries

Minor Resolved

6 Unsynchronized EOTS private key retrieval causes
potential panic and memory corruption

Minor Resolved

7 Passphrase handling in command line arguments Minor Resolved

8 Incomplete BLS key validation Minor Resolved

9 Usage of deprecated x/crisis module allows
attackers to DoS the chain

Minor Resolved

10 Plaintext password storage for BLS key decryption
undermines key confidentiality

Minor Acknowledged

11 Unbounded state growth due to unpruned BTC
staking gauges

Minor Acknowledged

12 Missing length validation of
TransactionKey.Hash in the
x/btccheckpointing module

Minor Resolved

13 Incomplete validation of
RawCheckpointWithMeta permits inconsistent
genesis configuration

Minor Resolved

14 Unvalidated genesis state in x/mint module leads
to chain halt risks

Minor Resolved

15 The x/btcstaking module GenesisState
lacks complete validation

Minor Resolved

11

16 Incorrect active finality provider validation in the
x/finality module GenesisState

Minor Resolved

17 Incomplete validation of
FinalityProviderDistInfo allows for loss of
commission and rewards

Minor Resolved

18 Lack of validation for consecutive EpochNumber
assignments at genesis

Minor Resolved

19 Missing validation of the Power field of a
Validator may result in potential overflows

Minor Resolved

20 Partial validation of Evidence allows invalid public
keys and signatures

Minor Resolved

21 Invalid LargesBtcReOrg set at genesis may
result in an immediate chain halt

Minor Resolved

22 Missing validation of
FinalityProviderSigningInfo permits
unexpected behavior

Minor Resolved

23 Incomplete passphrase validation for keyring
backends creates a security risk

Minor Resolved

24 Missing Period validation allows invalid rewards
tracking state

Minor Resolved

25 Insufficient EventsPowerUpdateAtHeight
validation allows negative amounts to corrupt
power calculations

Minor Resolved

26 Insufficient genesis validation allows invalid event
tracker height configuration

Minor Resolved

27 Missing validation allows gaps in historical rewards
and invalid tracker start periods

Minor Resolved

28 Fee grant allowance not restored during refunds
causes silent grant depletion

Minor Acknowledged

29 Upgrade handler channel rate limiting enables
denial of service via channel spam

Minor Resolved

30 Unused FpSlashed function causes unnecessary
state growth for slashed finality providers

Informational Acknowledged

31 Overlapping block scanning leads to performance
degradation

Informational Acknowledged

32 Inefficient handling of failing events Informational Resolved

12

33 Inconsistent error message for passphrase flag Informational Resolved

34 Misleading error message for keyring backend
validation

Informational Resolved

35 Conflicting tokenfactory conditions Informational Resolved

36 Remove redundant address length validation Informational Resolved

37 Inefficient query implementation with mixed state
functions

Informational Acknowledged

38 Prevent setting blocked addresses as withdrawal
addresses for incentive rewards

Informational Resolved

39 Unvalidated DelegationStateUpdate entries
permit arbitrary validator address values

Informational Resolved

40 Potential nil pointer dereference when validating
BlsMultiSig

Informational Resolved

41 The MaxAddressSize constant is excessively
large

Informational Resolved

42 Lack of sanity checks before subtraction allows
negative TotalActiveSat value

Informational Resolved

43 Misleading comment for
SetRewardTrackerEvent

Informational Resolved

44 Unresolved TODOs in the codebase Informational Acknowledged

13

Detailed Findings

1.​ Missing TLS credentials and HMAC key in gRPC client enables
credential compromise and MITM attacks

Severity: Major

In finality-provider:eotsmanager/cmd/eotsd/daemon/unlock.go:36-71, the
unlockKeyring function initializes a gRPC client connection using the
eotsclient.NewEOTSManagerGRpcClient method while explicitly passing an empty
string as the HMAC key.

This disables HMAC-based client authentication. Although the function ProcessHMACKey
emits a warning, it permits the connection to proceed without enforcing any authentication.

Furthermore, the gRPC connection is configured with insecure.NewCredentials,
resulting in unencrypted and unauthenticated communication.

Consequently, the Unlock method transmits sensitive data, including the EOTS public key
and user passphrase, without confidentiality or integrity protections.

This introduces the risk of credential compromise or man-in-the-middle (MITM) attacks.

Recommendation

We recommend enforcing strict authentication and secure transport in gRPC connections by:

●​ Replacing insecure.NewCredentials with credentials configured with proper
TLS certificates.

●​ Ensuring a valid and securely stored HMAC key is passed to
NewEOTSManagerGRpcClient, thereby enabling the
HMACUnaryClientInterceptor.

Status: Resolved

The client fixed the issue in #487.

2.​ Retrieving staking transactions using incorrect page increments
results in skipped transactions

Severity: Major

In
vigilante:btcstaking-tracker/stakingeventwatcher/stakingeventwatch
er.go:995, the fetchStakingTxsByEvent function retrieves staking transaction hashes

14

https://github.com/babylonlabs-io/finality-provider/pull/487

via the paginated query function StakingTxHashesByEvent, providing i and
batchSize as the page and page-entry-limit parameters, respectively.

However, after each call, i is incorrectly increased by batchSize instead of being
incremented by 1. If more than batchSize staking transactions exist between
startHeight and endHeight, up to batchSize pages of transactions are skipped. As a
result, the watcher silently omits delegations and never revisits those heights.

Recommendation

We recommend incrementing i by 1 after each fetch operation.

Status: Resolved

The client fixed the issue in #359.

3.​ Missing message size enforcement in DeliverTx enables
oversized IBC messages payload injection

Severity: Major

In babylon:app/ante/ibc_msg_size.go:25-44, the AnteHandle function of the
IBCMsgSizeDecorator validates IBC message size constraints only during the CheckTx
phase.

This validation includes limits on message, memo, and address sizes for MsgTransfer and
MsgSendTx messages.

However, no equivalent enforcement occurs during the DeliverTx phase, which is
responsible for block execution.

As a result, malicious proposers can bypass mempool checks and inject oversized IBC or ICA
messages directly into blocks without the risk of being slashed.

This forces other validators to process potentially resource-exhausting payloads, introducing
a denial of service vector within the consensus mechanism.

Recommendation

We recommend extending size validations to the DeliverTx phase.

Status: Resolved

The client fixed the issue in #1081.

15

https://github.com/babylonlabs-io/vigilante/pull/359/files
https://github.com/babylonlabs-io/babylon/pull/1081

4.​ Unbounded growth in historical finality provider rewards leads to
state bloat

Severity: Minor

The IncrementFinalityProviderPeriod function in
babylon:x/incentive/keeper/reward_tracker.go:214-256 persistently stores
historical reward records in the finalityProviderHistoricalRewards map.

The stored data, represented by newFpHistoricalRwd, includes cumulative reward values
that grow monotonically due to repeated additions of current reward per satoshi. This storage
pattern is triggered by common operations such as delegation updates, staking changes, and
reward withdrawals

However, no mechanism exists to remove old records that are no longer needed to process
rewards withdrawal or delegation modifications.

As a result, the blockchain state could expand unboundedly and increase storage costs and
requirements for validators.

Recommendation

We recommend implementing a pruning strategy that retains only necessary historical data
used in current reward calculations.

Status: Acknowledged

The client acknowledges this finding without a need for immediate resolution as it involves an
optimization in storage. The inefficiency is not directly exploitable.

The client plans to address it in an upcoming release and has created #812 to track this.

5.​ Insufficient validation of genesis’ RefundableMsgHashes allows
malformed entries

Severity: Minor

The validateMsgHashes function in
babylon:x/incentive/types/genesis.go:226-238 verifies that each hash in the
RefundableMsgHashes list is non-empty and unique.

However, it lacks enforcement of structural or length constraints on the hash values. This
permits malformed or arbitrarily long strings to be included in the genesis file.

16

https://github.com/babylonlabs-io/babylon/issues/812

Recommendation

We recommend strengthening the validation logic by enforcing at least a maximum allowed
length for each hash.

Status: Resolved

The client fixed the issue in #1066.

6.​ Unsynchronized EOTS private key retrieval causes potential
panic and memory corruption

Severity: Minor

In the getKeyFromMap function in
finality-provider:eotsmanager/localmanager.go:402-414, the code
accesses the privateKeys map without holding the required mutex lock.

The function assumes callers always hold the LocalEOTSManager.mm mutex, but the
callstack SignSchnorrSigFromKeyname, eotsPrivKeyFromKeyName,
getKeyFromMap violates this assumption.

Concurrent access to Go maps triggers runtime panics, creating a denial-of-service vector for
the eotsd daemon, and in Go runtime bug scenarios, could cause memory corruption,
leading to private key exposure.

We classify this as Minor because currently the SignSchnorrSigFromKeyname function is
only called from a CLI command handler, and the risk of concurrent access is negligible. It
requires immediate attention, however, as an unaware future maintainer may use the function
in a concurrent context.

Recommendation

We recommend acquiring the LocalEOTSManager.mm mutex within getKeyFromMap or
document and enforcing the locking requirement in all calling functions to prevent concurrent
map access.

Status: Resolved

The client fixed the issue in #480.

17

https://github.com/babylonlabs-io/babylon/pull/1066
https://github.com/babylonlabs-io/finality-provider/pull/480/files

7.​ Passphrase handling in command line arguments

Severity: Minor

In the unlockKeyring function, defined in
finality-provider:eotsmanager/cmd/eotsd/daemon/unlock.go:36, the
passphrase is passed as a command-line argument.

However, this could expose the passphrase in shell history.

While the daemon is likely used in controlled environments, it is best practice to avoid passing
sensitive information via command-line arguments.

Recommendation

We recommend using environment variables or secure input methods for passphrase
handling.

Status: Resolved

The client fixed the issue in #487.

8.​ Incomplete BLS key validation

Severity: Minor

In babylon:x/checkpointing/types/bls_key.go:29, the
ValidatorWithBlsKeySet.Validate function checks if the BLS key can be
unmarshaled, but does not verify if it is a valid point on the BLS12-381 curve.

This could potentially allow invalid public keys to be accepted and unexpected errors or
results when those keys are used.

Recommendation

We recommend adding explicit validation of the BLS public key point.

Status: Resolved

The client fixed the issue in #1129.

9.​ Usage of deprecated x/crisis module allows attackers to DoS
the chain

Severity: Minor

The Babylon Genesis chain currently employs the x/crisis module to allow any participant
to halt the chain in the event of an invariant violation by sending a MsgVerifyInvariant

18

https://github.com/babylonlabs-io/finality-provider/pull/487
https://github.com/babylonlabs-io/babylon/pull/1129

message. This mechanism is intended to increase the robustness of the network by enabling
the detection of critical inconsistencies.

However, the module is deprecated as indicated in GHSA-qfc5-6r3j-jj22 and
GHSA-w5w5-2882-47pc because it fails to induce a panic within transaction processing, thus
treating broken invariants as reverted transactions.

Additionally, as reported in the CVEs, processing MsgVerifyInvariant messages incurs
significant computational overhead, while the fee does not align with the computational
demand, making these transactions cheaper relative to their processing cost.

Recommendation

We recommend removing the x/crisis module. Instead, simulation tests should be
enhanced, and the implementation of the x/circuit module could be evaluated.

Status: Resolved

The client fixed the issue in #1156.

10.​ Plaintext password storage for BLS key decryption undermines
key confidentiality

Severity: Minor

In babylon:cmd/babylond/cmd/verify_val_bls_key.go:20, the
VerifyValidatorBlsKey command accepts a --bls-password-file flag, allowing
users to supply a password for decrypting the BLS key from a file.

However, this file is expected to store the password in plaintext, negating the security benefits
of key encryption. Any attacker with access to the local filesystem can trivially read the
password and decrypt the associated BLS key.

This creates a false sense of security while effectively negating encrypted key storage with
plaintext password exposure and introducing significant risks in validator setups.

Recommendation

We recommend eliminating reliance on plaintext password files.

Status: Acknowledged

The client acknowledges this finding with the note that plaintext storage is only one of the
options for specifying the BLS password, with more secure options available.

The client plans to deprecate plaintext file support and help users migrate in future releases.
Issue to track for the resolution: #1165

19

https://github.com/cosmos/cosmos-sdk/security/advisories/GHSA-qfc5-6r3j-jj22
https://github.com/cosmos/cosmos-sdk/security/advisories/GHSA-w5w5-2882-47pc
https://github.com/babylonlabs-io/babylon/pull/1156
https://github.com/babylonlabs-io/babylon/issues/1165

11.​ Unbounded state growth due to unpruned BTC staking gauges

Severity: Minor

The RewardBTCStaking function in
babylon:x/incentive/keeper/btc_staking_gauge.go:19 maintains a new BTC
staking gauge for each height but never removes old gauges after they are used.

However, this leads to unbounded state growth as the chain progresses, since each height's
gauge data remains in the state store indefinitely.

Recommendation

We recommend pruning the staking gauges after they are used.

However, the removal of previous gauges may impact the
QueryBTCStakingGaugeRequest query, so it may also be required to update the query
to note that it will not return inactive gauges.

Status: Acknowledged

The client acknowledges this finding as an optimization involving the pruning of historical
states without a direct exploitability.

The client plans to address it in upcoming releases. Issue to track for the resolution: #812.

12.​ Missing length validation of TransactionKey.Hash in the
x/btccheckpointing module

Severity: Minor

In babylon:x/btccheckpoint/types/types.go:207-212, the
TransactionKey.Validate method verifies that the Hash field is not nil.

However, it does not verify the length of the Hash, which should match the expected size of
the Bitcoin block hash.

This omission potentially leads to state corruption if an invalid genesis file is used.

Recommendation

We recommend validating that the length of the Hash field matches the expected size of a
Bitcoin block hash within the Validate method.

Status: Resolved

The client fixed the issue in #1099.

20

https://github.com/babylonlabs-io/babylon/issues/812
https://github.com/babylonlabs-io/babylon/pull/1099

13.​ Incomplete validation of RawCheckpointWithMeta permits
inconsistent genesis configuration

Severity: Minor

In babylon:x/checkpointing/types/checkpoint.go:5-19, the Validate
method validates the Ckpt and BlsMultiSig fields.

However, validation for other fields like Status and BlsAggrPk is missing. This allows the
genesis configuration to bypass constraints enforced during runtime operations, potentially
leading to inconsistencies.

Consequently, an improperly configured genesis file could result in a checkpoint with an
invalid state, such as a sealed checkpoint without a valid BLS aggregation public key.

Additionally, the call to BlsMultiSig.ValidateBasic is made twice if the field is not
nil, first when calling Ckpt.ValidateBasic and then again straight afterwards.

Recommendation

We recommend expanding the Validate method to encompass all fields within
RawCheckpointWithMeta, ensuring all invariants are enforced during genesis
initialization.

Additionally, we recommend removing the second call to BlsMultiSig.ValidateBasic.

Status: Resolved

The client fixed the issue in #1120.

14.​ Unvalidated genesis state in x/mint module leads to chain halt
risks

Severity: Minor

In babylon:x/mint/keeper/genesis.go:9-14, the InitGenesis function does not
validate the Minter field of the GenesisState before committing it to storage. If the
Minter configuration is invalid, it may lead to zero rewards being produced per block.

This would break the invariant in the x/incentive module’s RewardBTCStaking
function, called within the x/finality module EndBlocker, which will panic and halt the
chain if there is no reward gauge set for height being processed.

A reward gauge is only set if a non-zero amount of minted rewards is intercepted by the
HandleCoinsInFeeCollector function in
babylon:x/incentive/keeper/intercept_fee_collector.go:13-35.

21

https://github.com/babylonlabs-io/babylon/pull/1120

Recommendation

We recommend calling the GenesisState.Validate method during the InitGenesis
function to ensure the Minter is properly configured, as well as validating other genesis
state fields.

Additionally, to defend against chain halts, set an empty rewards gauge in the
HandleCoinsInFeeCollector in the event of zero rewards being intercepted.

Status: Resolved

The client fixed the issue in #1018.

15.​ The x/btcstaking module GenesisState lacks complete
validation

Severity: Minor

In babylon:x/btcstaking/types/genesis.go:24-53, the
GenesisState.Validate function checks the Params, LargestBtcReorg and
AllowedStakingTxHashes fields.

However, it lacks validation for the FinalityProviders, BtcDelegations,
BlockHeightChains, BtcDelegators, and Events fields.

This allows a genesis state to be committed that may be inconsistent with the application
logic, potentially leading to unexpected behavior.

Recommendation

We recommend validating all GenesisState fields where it is possible to do so.

Status: Resolved

The client fixed the issue in #1123.

16.​ Incorrect active finality provider validation in the x/finality
module GenesisState

Severity: Minor

In babylon:x/finality/types/power_table.go:145-153, the
VotingPowerDistCache.Validate function validates that NumActiveFps is not
greater than the total number of finality providers.

22

https://github.com/babylonlabs-io/babylon/pull/1018
https://github.com/babylonlabs-io/babylon/pull/1123

However, this does not accurately reflect the number of active finality providers, which should
only include those that are not jailed, slashed, or have a current delegation of zero sats.

Consequently, rewards may be distributed to undeserving finality providers if the invalid
VotingPowerDistCache is used in the execution of the RewardBTCStaking function.

Recommendation

We recommend updating the validation logic to accurately reflect the number of active finality
providers that meet the criteria for reward distribution.

Status: Resolved

The client fixed the issue in #1072.

17.​ Incomplete validation of FinalityProviderDistInfo allows
for loss of commission and rewards

Severity: Minor

In babylon:x/finality/types/power_table.go:213-222, the
FinalityProviderDistInfo.Validate method only validates the BtcPk field.

However, the Addr field, representing the finality provider's address, and the Commission
field are not validated.

This omission allows for the potential setting of an invalid address at genesis, which could
lead to a loss of commission payments, and a Commission value exceeding 1.0, which
would result in a reduction in delegator rewards by passing negative Coins amounts to
AddFinalityProviderRewardsForBtcDelegations in
babylon:x/incentive/keeper/btc_staking_gauge.go:66

Recommendation

We recommend validating that the Addr field is a valid Bech32 address and that the
Commission field value is between 0 and 1.0 in the
FinalityProviderDistInfo.Validate function.

Status: Resolved

The client fixed the issue in #1109.

23

https://github.com/babylonlabs-io/babylon/pull/1072
https://github.com/babylonlabs-io/babylon/pull/1109

18.​ Lack of validation for consecutive EpochNumber assignments at
genesis

Severity: Minor

In babylon:x/epoching/types/genesis.go:83-112, the validateEpochs
function verifies the uniqueness of EpochNumber, FirstBlockHeight, and
SealerBlockHash.

However, it does not validate that EpochNumber values are assigned in a consecutive
sequence.

Consequently, the invariant that a previous epoch always exists, which is assumed by the
RecordSealerAppHashForPrevEpoch function in
babylon:x/epoching/keeper/epochs.go:119-123, may be broken and could result
in a chain halt.

Recommendation

We recommend incorporating a check within the validateEpochs function to ensure that
EpochNumber values increment sequentially, thereby guaranteeing a complete epoch
history upon chain initialization.

Status: Resolved

The client fixed the issue in #1086.

19.​ Missing validation of the Power field of a Validator may result
in potential overflows

Severity: Minor

In babylon:x/epoching/types/epoching.go:211-215, the
Validator.Validate function does not check if the Power field is non-negative.

A negative Power would result in a series of silent overflows when the value is cast to an
unsigned integer in the Accumulate function in
babylon:x/checkpointing/types/types.go108-111, resulting in an incorrect
checkpoint status.

Recommendation

We recommend implementing a validation check to ensure the Validator.Power field is
non-negative.

Status: Resolved

The client fixed the issue in #1153.

24

https://github.com/babylonlabs-io/babylon/pull/1086
https://github.com/babylonlabs-io/babylon/pull/1153

20.​ Partial validation of Evidence allows invalid public keys and
signatures

Severity: Minor

In babylon:x/finality/types/finality.go:87-104, the Evidence entries are
not comprehensively validated for expected field lengths.

Specifically, the code does not verify that the FpBtcPk and ForkFinalitySig fields within
the Evidence struct are valid public keys and signature lengths, respectively.

As the FpBtcPk field is also used in the storage key for the Evidence entry, a corrupted
value in a genesis file may result in the a finality provider not being slashed if they submit a
second finality signature for the same block height, as HasEvidence will return false in
x/finality/keeper/msg_server.go:194 when called with the non-corrupted
FpBtcPk value.

Recommendation

We recommend implementing length checks for FpBtcPk and ForkFinalitySig during
Evidence validation.

Status: Resolved

The client fixed the issue in #1103.

21.​ Invalid LargesBtcReOrg set at genesis may result in an
immediate chain halt

Severity: Minor

In babylon:x/btcstaking/types/btcstaking.go:125-147, the
LargestBtcReOrg.Validate function does not check the BlockDiff value against the
RollbackFrom and RollbackTo heights.

Consequently, if an invalid LargestBtcReOrg entry is set with a BlockDiff that is larger
than the configured Params.BtcConfirmationDepth value, the chain will halt the first
time the HaltIfBtcReorgLargerThanConfirmationDepth function is run in the
x/btcstaking module EndBlocker.

Recommendation

We recommend validating the BlockDiff field by checking if it equals the difference
between RollbackFrom.Height and RollbackTo.Height as a form of stateless
validation that matches runtime creation logic in
babylon:x/btcstaking/types/btcstaking.go:119.

25

https://github.com/babylonlabs-io/babylon/pull/1103

Additionally, we recommend verifying that the value set at genesis is less than the
Params.BtcConfirmationDepth value, ensuring that the chain will not immediately halt.

Status: Resolved

The client fixed the issue in #1115.

22.​ Missing validation of FinalityProviderSigningInfo
permits unexpected behavior

Severity: Minor

In babylon:x/finality/types/signing_info.go:43-51, the
FinalityProviderSigningInfo.Validate method validates the FpBtcPk field.

However, the StartHeight and MissedBlockCounter fields, which are of type int64,
are not verified to be non-negative.

Consequently, if negative values are committed from a malformed genesis state, the finality
provider liveness logic, which operates on those fields, may produce unexpected results.

Recommendation

We recommend validating that StartHeight and MissedBlockCounter are greater than
or equal to zero in the FinalityProviderSigningInfo.Validate function.

Status: Resolved

The client fixed the issue in #1075.

23.​ Incomplete passphrase validation for keyring backends
creates a security risk

Severity: Minor

In finality-provider:eotsmanager/localmanager.go:110, the passphrase
length check only validates for keyring.BackendFile, missing validation for
keyring.BackendOS, which could lead to weak passphrases being accepted when using
keyring.BackendOS.

The restriction of keyring backends to "test" or "file" is only enforced in
finality-provider:eotsmanager/cmd/eotsd/daemon/start.go:41-43, as the
config validation in finality-provider:eotsmanager/config/config.go:90-92
only checks that the KeyringBackend field is not an empty string.

26

https://github.com/babylonlabs-io/babylon/pull/1115
https://github.com/babylonlabs-io/babylon/pull/1075

Recommendation

We recommend moving both the backend validation and passphrase requirements to the
config validation function in finality-provider:eotsmanager/config/config.go.

Status: Resolved

The client fixed the issue in #489.

24.​ Missing Period validation allows invalid rewards tracking
state

Severity: Minor

In babylon:x/incentive/types/rewards.go:82-101, the Validate function does
not verify that the Period field is greater than zero.

This omission allows FinalityProviderCurrentRewards objects with zero or negative
periods to be stored, causing unsigned integer underflows in
babylon:x/incentive/keeper/reward_tracker.go:238,288 when calculating
the previous Period in reward tracking operations.

Recommendation

We recommend adding a validation check in the Validate method to ensure the Period
field is greater than zero.

Status: Resolved

The client fixed the issue in #1137.

25.​ Insufficient EventsPowerUpdateAtHeight validation allows
negative amounts to corrupt power calculations

Severity: Minor

In babylon:x/incentive/types/rewards.go:135-158, the
EventsPowerUpdateAtHeight validation checks finality provider and delegator
addresses but fails to verify that TotalSat values are positive.

This oversight could allow events with negative TotalSat values from the genesis state to
be processed, causing BtcActivated events to decrease total staked amounts and
BtcUnbonded events to increase them, inverting their intended behavior and corrupting the
staking power calculations.

27

https://github.com/babylonlabs-io/finality-provider/pull/489
https://github.com/babylonlabs-io/babylon/pull/1137

Recommendation

We recommend validating that the TotalSat field is greater than zero for each event during
the validation process.

Status: Resolved

The client fixed the issue in #1112.

26.​ Insufficient genesis validation allows invalid event tracker
height configuration

Severity: Minor

In babylon:x/incentive/keeper/genesis.go:115-117, the InitGenesis
function sets LastProcessedHeightEventRewardTracker without validating it against
the current chain height.

This allows genesis configurations where the tracker height equals or exceeds the current
height, causing reward events to remain unprocessed until the blockchain surpasses the
misconfigured value.

Recommendation

We recommend validating that LastProcessedHeightEventRewardTracker is less
than the current block height before setting it.

Status: Resolved

The client fixed the issue in #1140.

27.​ Missing validation allows gaps in historical rewards and invalid
tracker start periods

Severity: Minor

In the validateFPHistoricalRewards and
validateBTCDelegationsRewardsTrackers functions in
babylon:x/incentive/types/genesis.go:240-286, the validation logic fails to
verify that finality providers have historical rewards entries for every period from 0 to
FinalityProviderCurrentRewards.Period - 1, and that delegation tracker
StartPeriodCumulativeReward values are less than the current rewards period.

This incomplete validation allows genesis states with missing historical periods or tracker start
periods exceeding the current period, causing reward calculation failures and incorrect
reward distributions.

28

https://github.com/babylonlabs-io/babylon/pull/1112
https://github.com/babylonlabs-io/babylon/pull/1140

Recommendation

We recommend adding validation to ensure each finality provider has historical rewards
entries for all periods from 0 through FinalityProviderCurrentRewards.Period -
1, and that all tracker entries have StartPeriodCumulativeReward values less than the
current rewards period.

Status: Resolved

The client fixed the issue in #1132.

28.​ Fee grant allowance not restored during refunds causes silent
grant depletion

Severity: Minor

In babylon:​​x/incentive/keeper/refundable_msg_index.go:10-29, the
RefundTx function processes fee refunds by transferring tokens from the fee collector
module back to the transaction’s fee payer.

When a fee grant is used, the Cosmos SDK correctly deducts the fee from the granter’s
allowance and transfers the tokens.

However, during the refund, while the tokens are returned to the granter, the allowance
consumed from the fee grant is not reinstated.

This results in silent depletion of the fee grant, effectively reducing the granter’s usable
allowance without actual transaction fee expenditure.

Over time, this inconsistency can restrict the granter’s ability to fund future transactions.

Recommendation

We recommend restoring the consumed fee grant allowance during the refund process.

Status: Acknowledged

The client acknowledges this issue and plans to resolve it in an upcoming release.

Issue to track for the resolution: #1167.

29

https://github.com/babylonlabs-io/babylon/pull/1132
https://github.com/babylonlabs-io/babylon/issues/1167

29.​ Upgrade handler channel rate limiting enables denial of
service via channel spam

Severity: Minor

In babylon:app/upgrades/v2/upgrades.go:98–109, the upgrade handler enforces
rate limiting across all channels.

However, this behavior allows a malicious actor to preemptively create a large volume of fake
channels prior to the upgrade. As these channels are automatically included in the
rate-limiting set, the system attempts to process them during the next epoch hour reset.

Consequently, this mass processing may exceed the permissible block execution time,
triggering a denial of service (DoS) condition and halting the chain.

Although gas costs and counterparty chain involvement pose natural barriers to channel
creation, the threat remains viable under specific conditions.

Recommendation

We recommend using a whitelist or governance process to enable rate limiting only for
specific channels.

Status: Resolved

The client fixed the issue in #1162.

30.​ Unused FpSlashed function causes unnecessary state
growth for slashed finality providers

Severity: Informational

In babylon:x/incentive/keeper/reward_tracker.go:52-77, the FpSlashed
function handles reward distribution and state cleanup for slashed finality providers and their
delegators.

However, this function is never invoked. When a finality provider is slashed, the system
maintains incorrect TotalActiveSat values equal to pre-slash amounts in
BTCDelegationRewardsTracker, FinalityProviderHistoricalRewards, and
FinalityProviderCurrentRewards storage.

In addition to producing misleading TotalActiveSat values in query results, subsequent
calls to sendAllBtcDelegationTypeToRewardsGauge during reward withdrawals
cause ongoing state growth by redundantly creating new storage entries for slashed finality
providers.

30

https://github.com/babylonlabs-io/babylon/pull/1162

Recommendation

We recommend adding an EventPowerUpdate_Slashed event handler that creates a
final FinalityProviderHistoricalRewards entry with the pre-slash
TotalStakedSat amount, removes the FinalityProviderCurrentRewards entry,
and flags the finality provider as slashed to prevent further state growth during reward
withdrawals.

Status: Acknowledged

The client acknowledges this as a valid informational issue as it affects state growth.

They plan to address this in future releases and will track it in #1166.

31.​Overlapping block scanning leads to performance degradation

Severity: Informational

In
vigilante:btcstaking-tracker/stakingeventwatcher/stakingeventwatch
er.go:156-177, the Start function launches concurrent goroutines to fetch delegations
and blocks from CometBFT.

However, while fetchDelegations traverses the blockchain from genesis up to a
dynamic, event-driven boundary (based on batch size), fetchCometBftBlockForever
begins from a static height retrieved once via CometBFTTipHeight and stored in
currentCometTipHeight. This results in overlapping block range traversals between the
two Go routines.

Consequently, the same block heights may be redundantly processed, triggering repeated
event queries and unnecessary handler invocations, which would degrade performance.

Recommendation

We recommend processing each height only once between multiple goroutines.

Status: Acknowledged

The client acknowledges this as an informational issue that does not require an immediate
resolution as the traversal overlap is negligible.

They have a partial fix in #369 and plan to fully address this in an upcoming release.

31

https://github.com/babylonlabs-io/babylon/issues/1166
https://github.com/babylonlabs-io/vigilante/pull/369

32.​ Inefficient handling of failing events

Severity: Informational

In
vigilante:btcstaking-tracker/stakingeventwatcher/stakingeventwatch
er.go:945, the fetchDelegationsByEvents function processes delegation events in a
loop but exits immediately if any single event processing fails.

Similarly, in
vigilante:btcstaking-tracker/stakingeventwatcher/stakingeventwatch
er.go:963-996, the fetchStakingTxsByEvent function processes staking
transactions in batches but has no error recovery mechanism.

However, in a production environment, this could lead to a single problematic event (e.g., RPC
timeout, invalid data) blocking the processing of all subsequent events.

This could lead to increased load on the Babylon node during retries and to an inefficient
processing.

Recommendation

We recommend implementing error handling that allows processing to continue despite
individual event failures, tracking failed events for separate retry mechanisms, adding
monitoring for failed event rates, and considering a maximum retry limit for failed events.

Status: Resolved

The client fixed the issue in #370.

33.​ Inconsistent error message for passphrase flag

Severity: Informational

In the unlockKeyring function, defined in
finality-provider:eotsmanager/cmd/eotsd/daemon/unlock.go:45-47, the
error message incorrectly references "chain-id flag" when it should be "passphrase
flag".

Developers might be confused when debugging issues related to passphrase handling.

Recommendation

We recommend updating the error message to correctly reference the correct flag.

Status: Resolved

The client fixed the issue in #487.

32

https://github.com/babylonlabs-io/vigilante/pull/370
https://github.com/babylonlabs-io/finality-provider/pull/487

34.​ Misleading error message for keyring backend validation

Severity: Informational

In the startFn function, defined in
finality-provider:eotsmanager/cmd/eotsd/daemon/start.go:41-43, the
error message states that the keyring backend must be "test" for automatic signing, but
the code actually accepts both "test" and "file" backends.

This creates confusion for users and developers. The keyring backend options have been
updated, but the error message has not been updated to reflect this.

Recommendation

We recommend updating the error message to accurately reflect that both "test" and
"file" backends are supported.

Status: Resolved

The client fixed the issue in #482.

35.​ Conflicting tokenfactory conditions

Severity: Informational

In babylon:app/keepers/keepers.go:598, the DefaultIsSudoAdminFunc
effectively disables sudo functionality for all addresses.

However, in babylon:app/keepers/keepers.go:111, token factory capabilities are
set.

While this is not altering the expected behavior, those conditions are conflicting.

Recommendation

We recommend resolving this conflict based on the intended configuration.

Status: Resolved

The client fixed the issue in #1036.

33

https://github.com/babylonlabs-io/finality-provider/pull/482
https://github.com/babylonlabs-io/babylon/pull/1036

36.​ Remove redundant address length validation

Severity: Informational

In babylon:app/params/config.go:80, the SetAddressVerifier function
performs two consecutive address length validations:

●​ A check against address.MaxAddrLen (255 bytes)

●​ A stricter check requiring either 20 or 32 bytes

The first check is redundant since any address that passes the second check (20 or 32 bytes)
will automatically satisfy the first check (≤ 255 bytes).

Recommendation

We recommend removing the redundant validation.

Status: Resolved

The client fixed the issue in #1170.

37.​ Inefficient query implementation with mixed state functions

Severity: Informational

In babylon:x/incentive/keeper/grpc_query.go:28,78, the Rewards query
handler is calling sendAllBtcDelegationTypeToRewardsGauge, which attempts state
modifications.

While these modifications won't be committed (due to Cosmos SDK's query context being
read-only), this is still problematic because it's inefficient and misleading.

The same function is used to make and commit state changes during other message types,
which violates the principle of separation between state-modifying and read-only operations.

This mixing of concerns makes the code harder to maintain and could lead to confusion about
the function's intended behavior in different contexts.

Recommendation

We recommend refactoring the code to separate the state-modifying logic from the read-only
query logic, creating distinct functions for each use case. This would make the code's intent
clearer and prevent any potential misuse of the functions in different contexts.

Status: Acknowledged

The client acknowledges this finding and plans to resolve it in an upcoming release.

Issue to track for resolution: #1169.

34

https://github.com/babylonlabs-io/babylon/pull/1170
https://github.com/babylonlabs-io/babylon/issues/1169

38.​ Prevent setting blocked addresses as withdrawal addresses
for incentive rewards

Severity: Informational

In babylon:x/incentive/keeper/msg_server.go:73-90, the
SetWithdrawAddress handler function for the MsgSetWithdrawAddress message
stores the user-provided withdrawAddress as the recipient address for rewards. By
default, the delegator address is used as the recipient address.

However, withdrawAddress might be a blocked address that is returned by the
BlockedAddresses function in babylon:app/app.go:860-870. For instance, a
module address would prevent withdrawing rewards, as sending the bank coins would fail in
this case.

Since this only affects the individual delegator, can be reversed, and has no other impacts,
we classify this issue as Informational.

Recommendation

We recommend returning an error if withdrawAddress is a blocked address.

Status: Resolved

The client fixed the issue in #1106.

39.​ Unvalidated DelegationStateUpdate entries permit
arbitrary validator address values

Severity: Informational

In babylon:x/epoching/types/epoching.go:225-231, the
DelegationLifecycle.Validate function checks for the presence of lifecycle entries.

However, the implementation fails to validate the individual DelegationStateUpdate
entries, specifically the ValAddr field, allowing arbitrary values to be supplied at genesis.

While it does not appear that this data is used in any application logic, any invalid data will be
returned by the DelegationLifecycle query handler in
babylon:x/epoching/keeper/grpc_query.go:198-208.

35

https://github.com/babylonlabs-io/babylon/pull/1106

Recommendation

We recommend validating each DelegationStateUpdate entry to ensure the ValAddr
field represents a valid address.

Status: Resolved

The client fixed the issue in #1178.

40.​ Potential nil pointer dereference when validating
BlsMultiSig

Severity: Informational

In babylon:x/checkpointing/types/types.go:186-200 the
RawCheckpoint.ValidateBasic function calls the ValidateBasic method on the
BlsMultiSig field.

However, since it is a pointer, it could lead to a runtime panic if the pointer is nil.

Currently, the RawCheckpoint.ValidateBasic is only called at genesis, so the runtime
panic will not result in failed transactions or chain halts, but it has the potential for both if used
in other contexts by future maintainers.

Recommendation

We recommend adding a nil check before calling ValidateBasic on the BlsMultiSig
field to prevent a potential runtime panic.

Status: Resolved

The client fixed the issue in #1118.

41.​ The MaxAddressSize constant is excessively large

Severity: Informational

In babylon:app/ante/ibc_msg_size.go:15, the MaxAddressSize constant is set to
65000 bytes.

This value is significantly larger than the maximum size of a Bech32 address, which is 90
characters, and allows for excessive amounts of data to be included in the address fields of
IBC transfer and Interchain Account messages.

36

https://github.com/babylonlabs-io/babylon/pull/1178
https://github.com/babylonlabs-io/babylon/pull/1118

Recommendation

We recommend reducing MaxAddressSize to a more conservative value consistent with
the maximum length of a Bech32 address.

Status: Resolved

The client fixed the issue in #1175.

42.​ Lack of sanity checks before subtraction allows negative
TotalActiveSat value

Severity: Informational

In babylon:x/incentive/keeper/reward_tracker_store.go:173-183, the
subFinalityProviderStaked function lacks sanity checks on the amt parameter before
subtracting it from the finality provider’s TotalActiveSat amount. The function trusts
callers to provide an amount less than or equal to the current TotalActiveSat. This allows
the invariant that TotalActiveSat must always be non-negative to be broken, which
potentially causes incorrect rewards calculations in the rewards distribution logic.

We classify this as Informational because currently the only caller first checks that subtracting
the amount parameter does not result in a negative TotalActiveSats value on a
BTCDelegationRewardsTracker instance associated with the finality provider. As long
as the invariant that the sum of all TotalActiveSats in associated rewards trackers equals
the finality provider’s TotalActiveSats, the call to subFinalityProviderStaked is
safe.

Recommendation

We recommend adding a validation check to ensure the subtraction result remains
non-negative and returning an error if the amount exceeds the current TotalActiveSats
value, similar to the subDelegationSat implementation.

Status: Resolved

The client fixed the issue in #1094.

43.​ Misleading comment for SetRewardTrackerEvent

Severity: Informational

In babylon:x/incentive/keeper/reward_tracker_events.go:137, the
comment for the SetRewardTrackerEvent function states that it returns a reward tracker,
but only an error or nil is returned.

37

https://github.com/babylonlabs-io/babylon/pull/1175
https://github.com/babylonlabs-io/babylon/pull/1094

This may cause confusion for future maintainers and reviewers.

Recommendation

We recommend rewording the misleading comment.

Status: Resolved

The client fixed the issue in #1090.

44.​ Unresolved TODOs in the codebase

Severity: Informational

The codebase contains multiple TODO comments that highlight incomplete features, deferred
improvements, or areas requiring further attention.

It is best practice to resolve todos before releasing the code into production.

Recommendation

We recommend reviewing and resolving outstanding TODO comments.

Status: Acknowledged

The client acknowledges the existence of TODOs in the codebase. The Babylon Genesis
chain is an evolving chain with a roadmap of planned improvements.

38

https://github.com/babylonlabs-io/babylon/pull/1090

	Babylon
	Table of Contents
	
	License
	
	Disclaimer
	Introduction
	Purpose of This Report
	Codebase Submitted for the Audit
	Methodology
	Functionality Overview

	How to Read This Report
	
	Code Quality Criteria
	
	Summary of Findings
	
	Detailed Findings
	1.​Missing TLS credentials and HMAC key in gRPC client enables credential compromise and MITM attacks
	2.​Retrieving staking transactions using incorrect page increments results in skipped transactions
	3.​Missing message size enforcement in DeliverTx enables oversized IBC messages payload injection
	4.​Unbounded growth in historical finality provider rewards leads to state bloat
	5.​Insufficient validation of genesis’ RefundableMsgHashes allows malformed entries
	6.​Unsynchronized EOTS private key retrieval causes potential panic and memory corruption
	7.​Passphrase handling in command line arguments
	8.​Incomplete BLS key validation
	9.​Usage of deprecated x/crisis module allows attackers to DoS the chain
	10.​ Plaintext password storage for BLS key decryption undermines key confidentiality
	11.​ Unbounded state growth due to unpruned BTC staking gauges
	12.​ Missing length validation of TransactionKey.Hash in the x/btccheckpointing module
	13.​ Incomplete validation of RawCheckpointWithMeta permits inconsistent genesis configuration
	14.​ Unvalidated genesis state in x/mint module leads to chain halt risks
	15.​ The x/btcstaking module GenesisState lacks complete validation
	16.​ Incorrect active finality provider validation in the x/finality module GenesisState
	17.​ Incomplete validation of FinalityProviderDistInfo allows for loss of commission and rewards
	18.​ Lack of validation for consecutive EpochNumber assignments at genesis
	19.​ Missing validation of the Power field of a Validator may result in potential overflows
	20.​Partial validation of Evidence allows invalid public keys and signatures
	21.​ Invalid LargesBtcReOrg set at genesis may result in an immediate chain halt
	22.​Missing validation of FinalityProviderSigningInfo permits unexpected behavior
	23.​ Incomplete passphrase validation for keyring backends creates a security risk
	24.​Missing Period validation allows invalid rewards tracking state
	25.​Insufficient EventsPowerUpdateAtHeight validation allows negative amounts to corrupt power calculations
	26.​Insufficient genesis validation allows invalid event tracker height configuration
	27.​Missing validation allows gaps in historical rewards and invalid tracker start periods
	28.​ Fee grant allowance not restored during refunds causes silent grant depletion
	29.​ Upgrade handler channel rate limiting enables denial of service via channel spam
	30.​ Unused FpSlashed function causes unnecessary state growth for slashed finality providers
	31.​Overlapping block scanning leads to performance degradation
	32.​ Inefficient handling of failing events
	33.​Inconsistent error message for passphrase flag
	34.​Misleading error message for keyring backend validation
	35.​Conflicting tokenfactory conditions
	36.​Remove redundant address length validation
	37.​ Inefficient query implementation with mixed state functions
	38.​Prevent setting blocked addresses as withdrawal addresses for incentive rewards
	39.​ Unvalidated DelegationStateUpdate entries permit arbitrary validator address values
	40.​ Potential nil pointer dereference when validating BlsMultiSig
	41.​ The MaxAddressSize constant is excessively large
	42.​Lack of sanity checks before subtraction allows negative TotalActiveSat value
	43.​Misleading comment for SetRewardTrackerEvent
	44.​Unresolved TODOs in the codebase

