Prepared by

Prepared for

Syed Faraz Abrar
Jisub Kim

Babylon

Ulrich Myhre

Avraham Weinstock

Zellic

June 28,2024

Blockchain Security Assessment

Babylon




1% :
\\4W ZeIIIC Babylon Blockchain Security Assessment June 28,2024
Contents About Zellic 4

1. Overview 4
11 Executive Summary 5
1.2.  Goals of the Assessment 5
1.3. Non-goals and Limitations 5
14. Results 6
2. Introduction 6
21.  About Babylon 7
2.2. Methodology 7
2.3.  Scope 9
2.4. Project Overview 1
2.5. Project Timeline 1
3. Detailed Findings 1
31 Lackofinputvalidations 12
3.2. Invalid creation of unbonding TX leads to loss of gas 14
3.3. Usealternative lib 16
3.4. Potential issues with the MinUnbondingTime parameter 17
4. Discussion 18
41.  Overflowed transaction promotion 19
4.2. Mitigating potential attacks through maximum staking value 19

Zellic © 2024 < Back to Contents Page 2 of 26



4ﬁ ZeIIIC Babylon Blockchain Security Assessment June 28,2024

4.3. Improving front-end security 19
5. Threat Model 20
5.1.  Transaction generation and signing 21
6. Assessment Results 25
61.  Disclaimer 26

Zellic © 2024 < Back to Contents Page 3 of 26



Babylon Blockchain Security Assessment June 28,2024

About Zellic

Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, and more.

Prior to Zellic, we founded the #1CTF (competitive hacking) team 2 worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

For more on Zellic's ongoing security research initiatives, check out our website zellic.io » and follow
@zellic_io »on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io 2.

1Z
N
)

Zellic © 2024

< Back to Contents Page 4 of 26


https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Babylon Blockchain Security Assessment June 28,2024

1. Overview

11.  Executive Summary

Zellic conducted a security assessment for Babylon from April 1st to May 31st, 2024. During this
engagement, Zellic reviewed Babylon's code for security vulnerabilities, design issues, and general
weaknesses in security posture.

Babylon plans to deploy the system in two phases. The first phase (Phase-1: Lock Only Network)
involves only Bitcoin locking, where Bitcoin holders submit a staking transaction to the Bitcoin
network. Slashing transactions will not be signed in this phase, so slashing will not be possible.

The Babylon mainnet phase-2 (Phase-2: Bitcoin Secured Babylon PoS chain) builds on phase-1 by
adding support for Proof-of-Stake (PoS) systems, including the Babylon chain, to activate staking.

Our review covered both phases of their system; however, only phase-1is included in this report.
Since Babylon expects to make significant changes to the phase-2 system in the coming months,
the report for those issues will be released at a future date.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

» Do the staking and unbonding transactions function as intended?

» Are signatures used correctly?

» Are the exposed RPC endpoints reasonable?

« Isthe correctinformation passed between various components of the system?

Is there a possibility for a malicious staker to avoid being slashed?

Could a finality provider selectively slash one of their delegators without consequence?

1.3. Non-goals and Limitations

We did not assess the following areas that were outside the scope of this engagement:

« Infrastructure relating to the project
» Key custody
» Front-end components, aside from the staking dashboard

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

Our engineers have invested a considerable amount of time gaining a deep understanding of the

Zellic © 2024

< Back to Contents Page 5 of 26



Babylon Blockchain Security Assessment June 28,2024

codebase and all the components involved in both Phase 1and Phase 2. However, since the majority
of our efforts were focused on the Phase 1 components, we strongly recommend a re-audit of the
Phase 2 components before they go live.

Additionally, the Babylon team has informed us that there will be several core changes and new
functionalities implemented in the Phase 2 components in the near future.

1.4. Results

During our assessment on the scoped Babylon modules, we discovered four findings. No critical
issues were found. One finding was of medium impact, one was of low impact, and the remaining
findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Babylon's benefit
in the Discussion section (4. 7).

Breakdown of Finding Impacts

Impact Level Count
M Critical 0
B High 0

Medium 1
N Low 1
B Informational 2

Zellic © 2024

< Back to Contents Page 6 of 26



Babylon Blockchain Security Assessment June 28,2024

2. Introduction

21.

About Babylon

Babylon contributed the following description of Babylon:

Babylon =z is a shared security project whose vision is to leverage the security of Bitcoin for
enhancing the security of PoS chains and L2s.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
both automated testing and manual review. These processes can vary significantly per engagement,
but the majority of the time is spent on a thorough manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, we may also employ sophisticated analyzers such as model
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the modules.

Business logic errors. Business logic is the heart of any blockchain application. We
examine the specifications and designs for inconsistencies, flaws, and weaknesses that
create opportunities for abuse. For example, these include problems like stake getting stuck,
ordenial of service of critical components. To the best of our abilities, time permitting, we also
review the blockchain logic to ensure that the code implements the expected functionality as
specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of a component's interaction
with other components. Time permitting, we review external interactions and summarize the
associated risks.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and

Zellic © 2024

< Back to Contents Page 7 of 26


https://babylonchain.io

Babylon Blockchain Security Assessment June 28,2024

Informational.

Zellic organizes its reports such that the most important findings come first in the document, rather
than being strictly ordered on impact alone. Thus, we may sometimes emphasize an "Informational”
finding higher than a"Low" finding. The key distinction is that although certain findings may have the
same impact rating, their importance may differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped modules itself. These observations — found in the Discussion
(4. 7) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024

< Back to Contents Page 8 of 26



4ﬁ ZeIIIC Babylon Blockchain Security Assessment June 28,2024

2.3. Scope

The engagementinvolved a review of the following targets:

Babylon Modules

Zellic © 2024 < Back to Contents Page 9 of 26



4? ZeIIIC Babylon Blockchain Security Assessment June 28,2024

Repositories https://github.com/babylonchain/babylon/ »
https:/github.com/babylonchain/btc-staking-ts z
https://github.com/babylonchain/simple-staking =
https://github.com/babylonchain/btc-staker »
https:/github.com/babylonchain/cli-tools #
https:/github.com/babylonchain/covenant-signer »
https:/github.com/babylonchain/staking-api-service a
https:/github.com/babylonchain/staking-indexer »
https://github.com/babylonchain/staking-expiry-checker z
https://github.com/babylonchain/staking-queue-client 2

Versions babylon: 8d76979ef05742206a74166¢c480c69b44b082798
btc-staking-ts: 6494df2b9f2¢c7a80578356659b1d24302e69dda?2
simple-staking: 9040c942d0b811e880d284a69d8abbca0572614f
btc-staker: 5b60b53074c8bc49132b25594248becc23fd6ed 1
cli-tools: d3921efd97bed74dbe9a3b8b578ab320e3460a52
covenant-signer: 91e4744bbe0bb440344354e380959d8126d9b82b
staking-api-service: 4e6033a0860d23400611bad24ec72934545f374
staking-indexer: c13b4f0dd1a57f5f327e5fee613bd41e1b923062
staking-expiry-checker: c04e2af4b38e363554b4a4b28485d484b837dbe3
staking-queue-client: 3f07eacc102a7ea9861689a4028c825d4a67e854

Programs « BTC Staker
+ BTC Staking Dashboard (simple-staking)
+ Babylon BTC Staking Library
« Covenant Signer
+ Faucet
- Staking API
« Staking Expiry Tracker
« Staking Indexer
+ Staking Queue Client
+ Unbonding Pipeline

Types Go, TypeScript

Platform Cosmos

Zellic © 2024 < Back to Contents Page 10 of 26


https://github.com/babylonchain/babylon/
https://github.com/babylonchain/btc-staking-ts
https://github.com/babylonchain/simple-staking
https://github.com/babylonchain/btc-staker
https://github.com/babylonchain/cli-tools
https://github.com/babylonchain/covenant-signer
https://github.com/babylonchain/staking-api-service
https://github.com/babylonchain/staking-indexer
https://github.com/babylonchain/staking-expiry-checker
https://github.com/babylonchain/staking-queue-client

4ﬁ ZeIIIC Babylon Blockchain Security Assessment June 28,2024

2.4. Project Overview

Zellic was contracted to perform a security assessment with four consultants for a total of 25.7
person-weeks. The assessment was conducted over the course of two calendar months.

Contact Information

The following project manager was associated  The following consultants were engaged to

with the engagement: conduct the assessment:
Chad McDonald Syed Faraz Abrar
¥+ Engagement Manager ¥+ Engineer
chad@zellic.io 2 faith@zellic.io #
Jisub Kim
4% Engineer

jisub@zellic.io #

Ulrich Myhre
Engineer
ulrich@zellic.io z

=
A
A

Avraham Weinstock
Engineer
avi@zellic.io 7

=
A
LAY

2.5. Project Timeline

April1,2024  Start of primary review period

April 4,2024  Kick-off call

May 31,2024 End of primary review period

Zellic © 2024 < Back to Contents Page 11 of 26


mailto:chad@zellic.io
mailto:faith@zellic.io
mailto:jisub@zellic.io
mailto:ulrich@zellic.io
mailto:avi@zellic.io

4? ZeIIIC Babylon Blockchain Security Assessment June 28,2024

3. Detailed Findings 3.1. Lackof input validations
Target BTC Staking TS and Go
Category Code Maturity Severity Low
Likelihood Low Impact Low
Description

The code does not properly validate user inputs in several areas:

* Numeric values
» Index values'range
 Length of buffer object

Additionally, required input values can be missing. The stakingTimeLock is two bytes for staking
time, which can overflow when the input exceeds 65535 (approximately 455 days). Although there
isacheckinvalidate(),itis notutilized in the codebase.

buildDataEmbedScript(): Buffer {
// 4 bytes for magic bytes
const magicBytes = Buffer.from("01020304", "hex");
// 1 byte for version
const version = Buffer.alloc(1l);
version.writeUInt8(0);
// 2 bytes for staking time

I const stakingTimelLock = Buffer.alloc(2); // here
/1 [...]

That lockTime is only two bytes also affects the Go implementation of btcstaking:

func buildTimelLockScript(
pubKey *btcec.PublicKey,
lockTime uinti6,

) ([lbyte, error) {
builder := txscript.NewScriptBuilder()
builder.AddData(schnorr.SerializePubKey (pubKey))
builder.AddOp(txscript.OP_CHECKSIGVERIFY)
builder.AddInt64(int64(lockTime))
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
return builder.Script()

Zellic © 2024 < Back to Contents Page 12 of 26



Babylon Blockchain Security Assessment June 28,2024

Impact

The lack of input validation can lead to unintended behavior or unexpected interruptions in code

execution.

Recommendations

We recommend the following:

Check that numeric values such as the amount, fee, and rates are nonnegative.
Check that index values are within a valid range.

Check and ensure that buffer objects have expected lengths, like checking pks.lengthin
utils/stakingScript.ts::buildMultiKeyScript.

Check that the required input values are not missing when creating an instance of the
StakingScriptData class.

Validate the scriptin the constructor.

Use at least 32 bits for lock time (Assuming 10-minute blocks, there are 144 blocks per
day, so 232 blocks would not overflow for approximately 81,715 years).

Remediation

Babylon acknowledged this issue and created a fix in 2.

Zellic © 2024

< Back to Contents Page 13 of 26


https://github.com/babylonchain/btc-staking-ts/pull/17

Babylon Blockchain Security Assessment June 28,2024

3.2. Invalid creation of unbonding TX leads to loss of gas

Target Simple Staking

Category Coding Mistakes Severity Medium

Likelihood Medium Impact Medium
Description

Disclaimer: The Babylon team had already fixed this issue approximately five hours prior to us
reporting it.

In Babylon's staking dashboard, users are able to execute staking and unbonding transactions.

The unbonding transaction specifically must adhere to the following criteria:

1. It contains exactly one input, which points to the staking transaction's taproot output.

2. It contains exactly one output, which must be a taproot output committing to the BTC un-
bonding scripts recognized by Babylon.

Itisimportant to note that the staking transaction can contain an arbitrary number of outputs, which
means that the staking transaction's output index can be an arbitrary positive number.

When the staking dashboard generates the unbonding transaction, it does it correctly. The one and
only output of the unbonding transaction will be the taproot output at index zero.

After the unbonding timelock period has expired, if the user wishes to withdraw their BTC, a with-
drawal transaction must be broadcasted.

This withdrawal transaction has one input, which points to the taproot output of the unbonding
transaction. In this case, the taproot output index will always be zero.

However, in the staking dashboard, the code actually passes in the staking transaction's output in-
dex tothewithdrawEarlyUnbondedTransaction() function

if (delegation?.unbondingTx) {

withdrawPsbtTxResult = withdrawEarlyUnbondedTransaction(
{

unbondingTimelockScript,
slashingScript,

Zellic © 2024

< Back to Contents Page 14 of 26



Babylon Blockchain Security Assessment June 28,2024

b
Transaction.fromHex(delegation.unbondingTx.txHex),
address,

btcWalletNetwork,

fees.fastestFee,

delegation.stakingTx.outputIndex,

Impact

The impact of this is that users will be unable to unbond if their staking transaction's taproot output
index was not set to zero.

We are not certain what the likelihood of this occurring is, but we assume a medium likelihood be-
cause the staking transaction's output index is not enforced or guaranteed to be 0.

Since users can still technically generate their own withdrawal transaction, we also assume a
medium severity. Itisimportant to note that typical users (i.e., the majority) will not have the technical
capability to do this.

With a medium likelihood and medium severity, we determined a medium impact to the user as they
are unable to withdraw their unbonded BTC.

Recommendations
Modify the call towithdrawEarlyUnbondedTransaction() in order to pass 0 as the output index.

Additionally, the call to withdrawTimelockUnbondedTransaction() must also be modified to pass
indelegation.stakingTx.outputIndex. This code isinthe same function.

Remediation

This issue has been acknowledged by Babylon, and a fix was implemented in commit

2.

Zellic © 2024

< Back to Contents Page 15 of 26


https://github.com/babylonchain/simple-staking/commit/5bb21090529bc3834f62ac1cc294276221d9d053

4ﬁ ZeIIIC Babylon Blockchain Security Assessment June 28,2024

3.3. Use alternative lib

Target btc-staking-ts/src/utils/curve.ts

Category Code Maturity Severity Informational

Likelihood Low Impact Informational
Description

In btc-staking-ts library, it uses ecc from @bitcoinerlab/secp256k1, which is not implemented
frombitcoinjs.

Impact

There is no guarantee that the bitcoinerlab will keep up with any interface changes in the future.

Recommendations

Use@bitcoinjs-1ib/tiny-secp256k1-asmjs, which converts to a native JS from its maintainer.

Remediation

This issue has been acknowledged by Babylon, and a fix was implemented in commit

2.

Zellic © 2024 < Back to Contents Page 16 of 26


https://github.com/babylonchain/btc-staking-ts/commit/627d82c20c03b5703e8d2708a28d37aad8b36f22

Babylon Blockchain Security Assessment June 28,2024

3.4. Potential issues with the MinUnbondingTime parameter

Target Staking Indexer

Category Coding Mistakes Severity Informational

Likelihood N/A Impact Informational
Description

The Babylon chain has a MinUnbondingTime parameter, which specifies the minimum unbonding
time that valid unbonding transactions must use in their time-lock script.

The staking indexer component tracks unbonding transactions by comparing the unbonding time
in the time-lock script to an UnbondingTime parameter. Note that this UnbondingTime parameter is
different to the MinUnbondingTime parameter in Babylon.

The issue is that the staking indexer performs an equality check (i.e., the unbonding time in the trans-
action must be equal to the UnbondingTime parameter in the indexer). Babylon, however, performs
a greater-than-or-equal-to check (i.e., the unbonding time must be greater than or equal to MinUn-
bondingTime).

Impact

This leads to anissue where a user might create an unbonding transaction with the unbonding time
set to a value greater than MinUnbondingTime but also not equal to the indexer's UnbondingTime.
This would prevent the indexer from ever picking up the transaction, which means the covenant
would never become aware of this transaction.

The impact from this is that the user would end up losing the gas fee that they paid for the unbonding
transaction and subsequently would need to recreate it with the correct unbonding time.

Recommendations

Our initial recommendation for a fix was to modify the checks in Babylon such that the unbonding
time in the transaction would have to match an exactly set parameter.

However, a finality provider can abuse this. The way finality providers can provide trust to users is
by having one big self-delegation to themselves. This tells the users that the finality provider will not
be malicious because they have the most to lose if they get slashed.

Nowy, if everyone has the same unbonding time, then the finality provider can unbond before any of
the delegators. Once the unbonding transaction has gone through the time-lock period, the finality
provider can withdraw and subsequently selectively slash any delegator they want without conse-

Zellic © 2024

< Back to Contents Page 17 of 26



Babylon Blockchain Security Assessment June 28,2024

quence. This means that there must be some leeway to set the unbonding time.

Our current recommendation is for the checks in the staking indexer (and other components) be
modified to be greater-than-or-equal-to checks, similar to how it is in Babylon.

Remediation

Babylon has informed us that they will leave the unbonding time checks as they are for now, since
the Babylon chain has not been implemented yet. They additionally provided the following context
for further clarity;

We find this a non-issue, as the lock-only system is intended to have more strict unbonding
time rules, requiring an exact unbonding time and not an unbonding time above a minimum.
The staking-indexer utilizes the lock-only system rules as it is only intended to be used for this
system. For phase-2, staking transactions are verified by the Babylon blockchain, which ap-
plies the phase-2 unbonding rules.

Zellic © 2024

< Back to Contents Page 18 of 26



Babylon Blockchain Security Assessment June 28,2024

4. Discussion

The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey that we
are suggesting a code change.

41. Overflowed transaction promotion

Automatically promoting the oldest overflow transaction that fits within the staking cap to active
status would make sense when the amount of active stake decreases due to time-lock expiration
or unbonding. While the Babylon team found this approach reasonable, they decided to keep the
system simple. The goal of the cap is to ensure a certain amount of Bitcoin remains locked in the
system, with any excess being unlocked.

4.2. Mitigating potential attacks through maximum staking value

Concerns were raised about the possibility of a single staker representing 100% of the BTC stake
on Babylon if the first staking transaction stakes the entire cap (without overflowing). This could
potentially allow them to attack proof-of-stake (POS) chains that honor Babylon stake in a way that
would not be possible without the cap. The team addressed two points in response to this concern.

First, to prevent the scenario where a single staker can dominate the BTC stake on Babylon, the max-
imum staking value will be set much smaller than the overall staking cap.

Second, in Phase 10f the Babylon protocol, there is no POS chain that could be attacked. The system
parameters are designed to be upgradable, allowing for the staking cap to be increased in the future
to accommodate more participants.

4.3. Improving front-end security

The Babylon team was concerned about front-end attacks such as CDN hacks and BGP hijack, and
we discussed the appropriate security mechanisms for that.

XSS

The likelihood of XSS (cross-site scripting) in the current system appears to be low. Firstly, there are
very few front-end pages, which reduces the attack surface. Secondly, most DOM elements are not
easily controllable by users, making it harder to inject malicious scripts. Lastly, the use of Next.js
makes it difficult for rendered values to be recognized as HTML tags, providing an additional layer of
protection.

Zellic © 2024

< Back to Contents Page 19 of 26



Babylon Blockchain Security Assessment June 28,2024

However, if an XSS vulnerability were to occur, it could have severe consequences, particularly in
relation to the connected OKX wallet. The OKX wallet signs transactions without validating if the
transaction data is related to staking. In the event of an XSS attack, an attacker could modify the API
endpoint or pollute the transaction data, redirecting the user's UTXO to their own address, conduct-
ing an arbitrary transfer of funds.

The primary defense against XSS vulnerabilities would be to exercise caution and follow best prac-
tices when adding new code to the staking dashboard or other front-end components interacting
with browser extensions like the OKX wallet. This includes validating and sanitizing user inputs, en-
coding output properly, implementing Content Security Policy (CSP), and regularly updating depen-
dencies to ensure they are free from known vulnerabilities.

CDN hacks

The dashboard is not vulnerable to CDN hacks because it does not load any scripts from external
resources.

At the application level, using nonexternal modules and subresource integrity (SRI) could be a way
to improve security at the front end. SRI hash calculation is typically performed during the web-
application development and deployment stages. Developers calculate the hash values of external
resources in advance and include them in the integrity attribute of the HTML. Therefore, the hash
values are already set before hacks occur.

BGP hijacking

From the perspective of defending BGP hijacks, RPKI (Resource Public Key Infrastructure) can be a
way that helps validate the legitimacy of BGP route announcements. It ensures that the entity an-
nouncing a specific IP-address range is indeed authorized to do so. By using a service provider with
RPKlimplemented, such as Cloudflare or Akamai, they can benefit from an additional layer of protec-
tion at the network level more easily. For example, balancer. fi experienced BGP hijacking before,
but 2.

Since BGP hijacking is an issue at the network-infrastructure level, it is difficult for the main web-
site itself to completely prevent BGP hijacking. In addition to applying RPKI, consistent monitoring
should be conducted to ensure that the routing and AS are correct, as well as the integrity of the
main page and third-party inclusions, to prevent abuse of the main site.

Zellic © 2024

< Back to Contents Page 20 of 26


https://slowmist.medium.com/analysis-of-balancer-bgp-hijacking-incident-40adb6b285b5

Babylon Blockchain Security Assessment June 28,2024

5. Threat Model

This provides a full threat model description for various functions. As time permitted, we analyzed
each function in the modules and created a written threat model for some critical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Transaction generation and signing

Specification

Transaction types
Babylon makes use of two transaction-output types: staking outputs and unbonding outputs.

1. Staking outputs commit to a taproot disjunction of three possible execution paths.
» Thetimelock path, which requires the staker's signature and also requires a certain num-
ber of blocks to pass.

« The unbonding path, which requires the staker's signature as well as a threshold of
covenant emulation committee signatures.

» The slashing path, which requires the staker's signature, the finality provider's signature,
and a threshold of covenant emulation committee signatures.

2. Unbonding outputs commit to a taproot disjunction of two possible execution paths.

» The timelock path, similar to the staking output's (but with a shorter duration in blocks
than the staking output's timelock path).

» The slashing path, with identical requirements to the staking output's slashing path.

Miniscript formulations

The different taproot script paths can be described in the miniscript language as follows:

» Timelock path: and_v(vc:pk_k(staker_pk), older(timelock_blocks))

« Unbonding path: and_v(vc:pk_k(staker_pk), multi_a(covenant_threshold,
covenant_pkl, ..., covenant_pkn))

» Slashing path: and_v (vc:pk_k(staker_pk), and_v(vc:pk_k(finalityprovider_pk),
multi_a(covenant_threshold, covenant_pkl, ..., covenant_pkn)))

Security properties

The staking and unbonding transactions, along with their bitcoin scripts, have a few security prop-
erties. These are:

Zellic © 2024

< Back to Contents Page 210f 26



Babylon Blockchain Security Assessment June 28,2024

» The timelock paths ensure that the system is fail-safe, in the sense that if all Babylon in-
frastructure ceases operating, the staker can eventually reclaim their stake with just the
Bitcoin network.

» The covenant emulation committee signatures on the slashing path allow the commit-
tee to enforce that slashing transactions have additional structure — that they send a
specified percentage of the input to an unspendable burn address and the remainder to
a change address controlled by the staker.

» The staker and covenant emulation committee signatures provide defense-in-depth
against slashing occurring in Phase 1. Phase 1 signing flows do not require the slash-
ing path to be presigned by the staker, and covenant-signer (the Phase 1 counterpart
to covenant-emulator)only signs unbonding paths.

» The finality provider's key is used to sign proof-of-stake blocks using EOTS, which leak
the key on equivocation (i.e., validator misbehavior). For Phase 2 in the future, stake will
only be considered active once the corresponding slashing path has been presigned by
the staker and covenantemulation committee, which allow anyone to submit the slashing
transaction upon validator misbehavior.

» The covenant signatures on the slashing path are adaptor signatures encrypted towards
each finality provider to enforce atomic slashing (i.e., that anyone can ensure that if at
least one delegator to a finality provider is slashed, all delegators to that finality provider
are slashed).

babylon/btcstaking

The btcstaking library contains methods that construct and sign transactions in accordance with
the aforementioned specification.

* newBabylonScriptPaths, called by BuildStakingInfo (for the staking output)and Buil-
dUnbondingInfo (for the unbonding output), builds all three paths.

e buildTimeLockScript builds the timelock path, with lockTime as a parameter (see Find-
ing 3.1. 7).

* buildSingleKeySigScript and buildMultiSigScript are used to build individual
signature-checking scripts and m-of-n multi-sig-checking scripts.

* In newBabylonScriptPaths, unbondingPathScript requires the staker's signature (via
stakerKey)and covenantQuorumofthe covenant signatures (fromthe set covenantKeys).

* In newBabylonScriptPaths, slashingPathScript requires the staker's signature, one
finality-provider signature (from a set of fpKeys), and covenantQuorum of the covenant
signatures.

» SignTxWithOneScriptSpendInputFromTapLeaf signs Bitcoin transactions.

* EncSignTxWithOneScriptSpendInputStrict signs Bitcoin transactions as adaptor sig-
natures (where either the signature or the encryption private key can be recovered from
the other).

» ValidateSlashingTx ensures (among other properties) that a candidate slashing trans-
action has the expected slashing and change outputs.

Zellic © 2024

< Back to Contents Page 22 of 26



4ﬁ ZelIIC Babylon Blockchain Security Assessment June 28,2024

e BuildVOIdentifiableStakingOutputsAndTx constructsan unsigned partial transaction
with no inputs and a staking output and OP_RETURN output with metadata.

» ParseV0StakingTx validates that an existing transaction is a staking transaction.

btc-staking-ts

The btc-staking-ts library contains methods that construct staking, unbonding, and slashing and
sign transactions in accordance with the aforementioned specification.

» stakingTransaction generates an unsigned BTC staking transaction in PSBT format.
The outputincludes an unsigned PSBT with the staking script, change, and optional data
embed script, along with the total transaction fee.

» withdrawTimelockUnbondedTransaction generates transactions to withdraw un-
bonded staking funds. They call the withdrawalTransaction function to create the
actual transaction.

* unbondingTransaction generates a transaction that converts staking funds to an un-
bonding state. It just returns PBST, needs to be signed with signTransaction or cre-
ateWitness, and signs transactions by using BIP-0332. The staking script allows users
to, on-demand, unbond their locked stake before the staking-transaction time lock ex-
pires, subject to an unbonding period.

» createWitness creates a witness for use in an unbonding transaction in PSBT format as,
apart from the staker’s signature, it also needs a set of signatures from the covenantem-
ulation committee. It combines the original witness data with covenant-related data to
generate a new witness.

» slashingTransaction generates a transaction that sends a portion of the staking funds
to a slashing address and returns the remainder to the user when slashing conditions are
met. The output consists of two transactions: one sending a portion of the input funds (in-
put * slashing_rate) to the slashing address and the other sending the remaining input
funds minus fee (input * (1-slashing_rate) - fee) back to the user's address.

« withdrawal generates atransactionthatconsumes the staking outputtowithdraw funds.

* buildSingleKeyScript and buildMultiKeyScript allow us to reuse functionality for
creating Bitcoin scripts for the unbonding script and the slashing script.

e buildMultiKeyScript uses BIP-0342 (Tapscript) to build multikey scripts. It validates
whether provided keys are unique and the threshold is not greater than the number of
keys. If there is only one key provided, it will return single-key-sig script. It checks that
the key must be sorted and verifies there are no duplicates.

cli-tools
The cli-tools binary contains several commands relevant to transactions:

» create-phasel-staking-tx,whichusesbtcstaking.BuildVOIdentifiableStakingOutputsA
to produce an unsigned partial staking transaction (to be completed with bitcoind's
fundrawtransaction and signrawtransactionwithwallet commands)

Zellic © 2024 < Back to Contents Page 23 of 26



Babylon Blockchain Security Assessment June 28,2024

» create-phasel-unbonding-request, which creates and signs (with the staker's key) an
unbonding transaction, given information on the corresponding staking transaction

* create-phasel-withdaw-request, which createsand signs(with the staker's key) a time-
lock path of either a staking or an unbonding transaction

* run-unbonding-pipeline, which retrieves unbonding transactions from a MongoDB in-
stance populated by staking-api-service and sends them to covenant-signer to at-
tach covenant emulation committee signatures.

simple-staking

The simple-stakingisa front-end dApp for creating Bitcoin staking transactions. It integrates with
a set of extension wallets satisfying its expected interface. It is hosted by Babylon and serves as
a reference implementation for entities that want to set up their own staking website. This uses
btc-staking-ts for constructing staking/unbonding transactions, signs through extension wallets
imported, then submits to staking and withdrawal transactions to Bitcoin. It also submits any un-
bonding transactions to the staking-api.

btc-staker

The staker-cli command contains the following Phase 1 commands under the transaction sub-
command:

» check-phasel-staking-transaction validates a staking transaction with btcstak-
ing.ParseV0StakingTx and optionally checks that provided additional data matches.

* create-phasel-staking-transaction creates an unsigned partial staking transaction
with btcstaking.BuildVOIdentifiableStakingOutputsAndTx, similarly to c1i tools
create-phasel-staking-tx.

» create-phasel-unbonding-transactioncreatesaBIP174 PSBT foran unbonding trans-
action, given the corresponding staking transaction to be used as input.

» create-phasel-staking-transaction-json is similar to create-phasel-staking-
transaction but takes its parameters through a JSON file instead of via CLI arguments.

The stakerd service contains behavior relevant to Phase 2, including automatically synchronizing
state between the Bitcoin and Babylon chains and signing slashing transactions for staking transac-
tions that have been processed by Bitcoin but that are not yet recognized as delegations by Babylon.

covenant-signer

The covenant-signer service exposes a "/v1/sign-unbonding-tx" route that provides covenant
emulation committee signatures for unbonding transactions whose parameters are in bounds,
whose only input is a staking output (that parses according to btcstaking.ParseV0StakingTx) that
has sufficient confirmation depth on the Bitcoin blockchain, and whose only outputis equal to an un-
bonding output reconstructed from the staking output's information. The covenant-signer service
does not sign slashing transactions, which mitigates the risk of Phase 1slashing.

Zellic © 2024

< Back to Contents Page 24 of 26



Babylon Blockchain Security Assessment June 28,2024

staking-indexer

The staking-indexer service scans the Bitcoin blockchain for staking, unbonding, and withdrawal
(i.e., timelock path) transactions that have the expected structure and that their values are in bounds
(including checking statefully that the total stake does not exceed a parameterized cap) and forwards
them as {ActiveStakingEvent,UnbondingStakingEvent,WithdrawStakingEvent}s to the queue.

staking-api-service

The staking-api-service service provides several HTTP GET endpoints that simple-staking
uses to display the state of Babylon as well as a POST endpoint that is used to initiate unbonding
(which saves the provided transactions and staker signature to the MongoDB table to be read by
unbonding-pipeline). It also receives messages from the various queues, keeping its database
state in sync with the Babylon and Bitcoin chains.

staking-expiry-checker

The staking-expiry-checker service connects to the same MongoDB instance as staking-api-
service, which has a table of staking transactions together with the heights they will expire at. It re-
trieves transactions that have expired by the current height according to a Bitcoin clientand submits
ExpiredStakingEvents to the queue for them, removing them from the database upon successful
queue submission.

Zellic © 2024

< Back to Contents Page 25 of 26



Babylon Blockchain Security Assessment June 28,2024

6. Assessment Results

At the time of our assessment, the reviewed code was not deployed to the canonical Bitcoin chain.

During our assessment on the scoped Babylon modules, we discovered four findings. No critical
issues were found. One finding was of medium impact, one was of low impact, and the remaining
findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommend multiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, and we encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024

< Back to Contents Page 26 of 26



	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Babylon
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Lack of input validations
	Invalid creation of unbonding TX leads to loss of gas
	Use alternative lib
	Potential issues with the MinUnbondingTime parameter

	Discussion
	Overflowed transaction promotion
	Mitigating potential attacks through maximum staking value
	Improving front-end security

	Threat Model
	Transaction generation and signing

	Assessment Results
	Disclaimer


