
Prepared for
Babylon

Prepared by
Syed Faraz Abrar
Jisub Kim
UlrichMyhre
AvrahamWeinstock
ZellicJune 28, 2024

Babylon
Blockchain Security Assessment



Babylon Blockchain Security Assessment June 28, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 6

2. Introduction 6

2.1. About Babylon 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 11

2.5. Project Timeline 11

3. Detailed Findings 11

3.1. Lack of input validations 12

3.2. Invalid creation of unbonding TX leads to loss of gas 14

3.3. Use alternative lib 16

3.4. Potential issues with theMinUnbondingTime parameter 17

4. Discussion 18

4.1. Overflowed transaction promotion 19

4.2. Mitigating potential attacks throughmaximum staking value 19

Zellic © 2024 ← Back to Contents Page 2 of 26



Babylon Blockchain Security Assessment June 28, 2024

4.3. Improving front-end security 19

5. ThreatModel 20

5.1. Transaction generation and signing 21

6. Assessment Results 25

6.1. Disclaimer 26

Zellic © 2024 ← Back to Contents Page 3 of 26



Babylon Blockchain Security Assessment June 28, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 26

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


Babylon Blockchain Security Assessment June 28, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Babylon from April 1st to May 31st, 2024. During this
engagement, Zellic reviewed Babylon's code for security vulnerabilities, design issues, and general
weaknesses in security posture.

Babylon plans to deploy the system in two phases. The first phase (Phase-1: Lock Only Network)
involves only Bitcoin locking, where Bitcoin holders submit a staking transaction to the Bitcoin
network. Slashing transactions will not be signed in this phase, so slashing will not be possible.

The Babylon mainnet phase-2 (Phase-2: Bitcoin Secured Babylon PoS chain) builds on phase-1 by
adding support for Proof-of-Stake (PoS) systems, including the Babylon chain, to activate staking.

Our review covered both phases of their system; however, only phase-1 is included in this report.
Since Babylon expects to make significant changes to the phase-2 system in the coming months,
the report for those issues will be released at a future date.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Do the staking and unbonding transactions function as intended?
• Are signatures used correctly?
• Are the exposed RPC endpoints reasonable?
• Is the correct information passed between various components of the system?
• Is there a possibility for amalicious staker to avoid being slashed?
• Could a finality provider selectively slash one of their delegators without consequence?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Infrastructure relating to the project
• Key custody
• Front-end components, aside from the staking dashboard

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

Our engineers have invested a considerable amount of time gaining a deep understanding of the

Zellic © 2024 ← Back to Contents Page 5 of 26



Babylon Blockchain Security Assessment June 28, 2024

codebase andall the components involved in bothPhase 1 andPhase2. However, since themajority
of our efforts were focused on the Phase 1 components, we strongly recommend a re-audit of the
Phase 2 components before they go live.

Additionally, the Babylon team has informed us that there will be several core changes and new
functionalities implemented in the Phase 2 components in the near future.

1.4. Results

During our assessment on the scoped Babylon modules, we discovered four findings. No critical
issues were found. One finding was of medium impact, one was of low impact, and the remaining
findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Babylon's benefit
in the Discussion section (4. ↗).

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 0

■ Medium 1

■ Low 1

■ Informational 2

Zellic © 2024 ← Back to Contents Page 6 of 26



Babylon Blockchain Security Assessment June 28, 2024

2. Introduction 2.1. About Babylon

Babylon contributed the following description of Babylon:

Babylon ↗ is a shared security project whose vision is to leverage the security of Bitcoin for
enhancing the security of PoS chains and L2s.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with themodules.

Business logic errors. Business logic is the heart of any blockchain application. We
examine the specifications and designs for inconsistencies, flaws, and weaknesses that
create opportunities for abuse. For example, these include problems like stake getting stuck,
ordenialofserviceofcritical components. To thebestofourabilities, timepermitting,wealso
review theblockchain logic to ensure that the code implements theexpected functionality as
specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of a component's interaction
withother components. Timepermitting,we reviewexternal interactionsandsummarize the
associated risks.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and

Zellic © 2024 ← Back to Contents Page 7 of 26

https://babylonchain.io


Babylon Blockchain Security Assessment June 28, 2024

Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped modules itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 26



Babylon Blockchain Security Assessment June 28, 2024

2.3. Scope

The engagement involved a review of the following targets:

BabylonModules

Zellic © 2024 ← Back to Contents Page 9 of 26



Babylon Blockchain Security Assessment June 28, 2024

Repositories https://github.com/babylonchain/babylon/ ↗
https://github.com/babylonchain/btc-staking-ts ↗
https://github.com/babylonchain/simple-staking ↗
https://github.com/babylonchain/btc-staker ↗
https://github.com/babylonchain/cli-tools ↗
https://github.com/babylonchain/covenant-signer ↗
https://github.com/babylonchain/staking-api-service ↗
https://github.com/babylonchain/staking-indexer ↗
https://github.com/babylonchain/staking-expiry-checker ↗
https://github.com/babylonchain/staking-queue-client ↗

Versions babylon: 8d76979ef05742206a74166c480c69b44b082798
btc-staking-ts: 6494df2b9f2c7a80578356659b1d24302e69dda2
simple-staking: 9040c942d0b811e880d284a69d8abbca0572614f
btc-staker: 5b60b53074c8bc49132b25594248becc23fd6e41
cli-tools: d3921efd97bed74dbe9a3b8b578ab320e3460a52
covenant-signer: 91e4744bbe0bb440344354e380959d8126d9b82b
staking-api-service: 4e6033a0860df23400611bad24ec72934545f374
staking-indexer: c13b4f0dd1a57f5f327e5fee613bd41e1b923062
staking-expiry-checker: c04e2af4b38e363554b4a4b28485d484b837dbe3
staking-queue-client: 3f07eacc102a7ea9861689a4028c825d4a67e854

Programs • BTC Staker
• BTC Staking Dashboard (simple-staking)
• Babylon BTC Staking Library
• Covenant Signer
• Faucet
• Staking API
• Staking Expiry Tracker
• Staking Indexer
• Staking Queue Client
• Unbonding Pipeline

Types Go, TypeScript

Platform Cosmos

Zellic © 2024 ← Back to Contents Page 10 of 26

https://github.com/babylonchain/babylon/
https://github.com/babylonchain/btc-staking-ts
https://github.com/babylonchain/simple-staking
https://github.com/babylonchain/btc-staker
https://github.com/babylonchain/cli-tools
https://github.com/babylonchain/covenant-signer
https://github.com/babylonchain/staking-api-service
https://github.com/babylonchain/staking-indexer
https://github.com/babylonchain/staking-expiry-checker
https://github.com/babylonchain/staking-queue-client


Babylon Blockchain Security Assessment June 28, 2024

2.4. Project Overview

Zellic was contracted to perform a security assessment with four consultants for a total of 25.7
person-weeks. The assessment was conducted over the course of two calendarmonths.

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Syed Faraz Abrar
Engineer
faith@zellic.io ↗

Jisub Kim
Engineer
jisub@zellic.io ↗

UlrichMyhre
Engineer
ulrich@zellic.io ↗

AvrahamWeinstock
Engineer
avi@zellic.io ↗

2.5. Project Timeline

April 1, 2024 Start of primary review period

April 4, 2024 Kick-off call

May 31, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 11 of 26

mailto:chad@zellic.io
mailto:faith@zellic.io
mailto:jisub@zellic.io
mailto:ulrich@zellic.io
mailto:avi@zellic.io


Babylon Blockchain Security Assessment June 28, 2024

3. Detailed Findings 3.1. Lack of input validations

Target BTC Staking TS and Go

Category CodeMaturity Severity Low

Likelihood Low Impact Low

Description

The code does not properly validate user inputs in several areas:

• Numeric values
• Index values' range
• Length of buffer object

Additionally, required input values can be missing. The stakingTimeLock is two bytes for staking
time, which can overflow when the input exceeds 65535 (approximately 455 days). Although there
is a check in validate(), it is not utilized in the codebase.

buildDataEmbedScript(): Buffer {
// 4 bytes for magic bytes
const magicBytes = Buffer.from("01020304", "hex");
// 1 byte for version
const version = Buffer.alloc(1);
version.writeUInt8(0);
// 2 bytes for staking time

! const stakingTimeLock = Buffer.alloc(2); // here
// [...]

}

That lockTime is only two bytes also affects the Go implementation of btcstaking:

func buildTimeLockScript(
pubKey *btcec.PublicKey,
lockTime uint16,

) ([]byte, error) {
builder := txscript.NewScriptBuilder()
builder.AddData(schnorr.SerializePubKey(pubKey))
builder.AddOp(txscript.OP_CHECKSIGVERIFY)
builder.AddInt64(int64(lockTime))
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
return builder.Script()

Zellic © 2024 ← Back to Contents Page 12 of 26



Babylon Blockchain Security Assessment June 28, 2024

}

Impact

The lack of input validation can lead to unintended behavior or unexpected interruptions in code
execution.

Recommendations

We recommend the following:

• Check that numeric values such as the amount, fee, and rates are nonnegative.
• Check that index values are within a valid range.
• Check andensure that buffer objects haveexpected lengths, like checking pks.length in
utils/stakingScript.ts::buildMultiKeyScript.

• Check that the required input values are not missing when creating an instance of the
StakingScriptData class.

• Validate the script in the constructor.
• Use at least 32 bits for lock time (Assuming 10-minute blocks, there are 144 blocks per
day, so 232 blocks would not overflow for approximately 81,715 years).

Remediation

Babylon acknowledged this issue and created a fix in pull request #17 ↗.

Zellic © 2024 ← Back to Contents Page 13 of 26

https://github.com/babylonchain/btc-staking-ts/pull/17


Babylon Blockchain Security Assessment June 28, 2024

3.2. Invalid creation of unbonding TX leads to loss of gas

Target Simple Staking

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

Disclaimer: The Babylon teamhad already fixed this issue approximately five hours prior to us
reporting it.

In Babylon's staking dashboard, users are able to execute staking and unbonding transactions.

The unbonding transaction specifically must adhere to the following criteria:

1. It contains exactly one input, which points to the staking transaction's taproot output.

2. It contains exactly one output, whichmust be a taproot output committing to the BTCun-
bonding scripts recognized by Babylon.

It is important to note that the staking transaction can contain an arbitrary number of outputs, which
means that the staking transaction's output index can be an arbitrary positive number.

When the staking dashboard generates the unbonding transaction, it does it correctly. The one and
only output of the unbonding transaction will be the taproot output at index zero.

After the unbonding timelock period has expired, if the user wishes to withdraw their BTC, a with-
drawal transactionmust be broadcasted.

This withdrawal transaction has one input, which points to the taproot output of the unbonding
transaction. In this case, the taproot output index will always be zero.

However, in the staking dashboard, the code actually passes in the staking transaction's output in-
dex to the withdrawEarlyUnbondedTransaction() function:

if (delegation?.unbondingTx) {
// Withdraw funds from an unbonding transaction that was submitted for early
unbonding and the unbonding period has passed

withdrawPsbtTxResult = withdrawEarlyUnbondedTransaction(
{
unbondingTimelockScript,
slashingScript,

Zellic © 2024 ← Back to Contents Page 14 of 26



Babylon Blockchain Security Assessment June 28, 2024

},
Transaction.fromHex(delegation.unbondingTx.txHex),
address,
btcWalletNetwork,
fees.fastestFee,
delegation.stakingTx.outputIndex, // Incorrect index

);
}

Impact

The impact of this is that users will be unable to unbond if their staking transaction's taproot output
index was not set to zero.

We are not certain what the likelihood of this occurring is, but we assume a medium likelihood be-
cause the staking transaction's output index is not enforced or guaranteed to be 0.

Since users can still technically generate their own withdrawal transaction, we also assume a
mediumseverity. It is important tonote that typical users (i.e., themajority)will nothave the technical
capability to do this.

With amedium likelihood andmediumseverity, we determined amedium impact to the user as they
are unable to withdraw their unbonded BTC.

Recommendations

Modify the call to withdrawEarlyUnbondedTransaction() in order to pass 0 as the output index.

Additionally, the call to withdrawTimelockUnbondedTransaction()must also be modified to pass
in delegation.stakingTx.outputIndex. This code is in the same function.

Remediation

This issue has been acknowledged by Babylon, and a fix was implemented in commit
5bb21090 ↗.

Zellic © 2024 ← Back to Contents Page 15 of 26

https://github.com/babylonchain/simple-staking/commit/5bb21090529bc3834f62ac1cc294276221d9d053


Babylon Blockchain Security Assessment June 28, 2024

3.3. Use alternative lib

Target btc-staking-ts/src/utils/curve.ts

Category CodeMaturity Severity Informational

Likelihood Low Impact Informational

Description

In btc-staking-ts library, it uses ecc from @bitcoinerlab/secp256k1, which is not implemented
from bitcoinjs.

Impact

There is no guarantee that the bitcoinerlabwill keep upwith any interface changes in the future.

Recommendations

Use @bitcoinjs-lib/tiny-secp256k1-asmjs, which converts to a native JS from its maintainer.

Remediation

This issue has been acknowledged by Babylon, and a fix was implemented in commit
627d82c2 ↗.

Zellic © 2024 ← Back to Contents Page 16 of 26

https://github.com/babylonchain/btc-staking-ts/commit/627d82c20c03b5703e8d2708a28d37aad8b36f22


Babylon Blockchain Security Assessment June 28, 2024

3.4. Potential issues with theMinUnbondingTime parameter

Target Staking Indexer

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The Babylon chain has a MinUnbondingTime parameter, which specifies the minimum unbonding
time that valid unbonding transactionsmust use in their time-lock script.

The staking indexer component tracks unbonding transactions by comparing the unbonding time
in the time-lock script to an UnbondingTime parameter. Note that this UnbondingTime parameter is
different to the MinUnbondingTime parameter in Babylon.

The issue is that the staking indexerperformsanequality check (i.e., theunbonding time in the trans-
action must be equal to the UnbondingTime parameter in the indexer). Babylon, however, performs
a greater-than-or-equal-to check (i.e., the unbonding time must be greater than or equal to MinUn-
bondingTime).

Impact

This leads to an issuewhere a usermight create an unbonding transactionwith the unbonding time
set to a value greater than MinUnbondingTime but also not equal to the indexer's UnbondingTime.
This would prevent the indexer from ever picking up the transaction, which means the covenant
would never become aware of this transaction.

The impact from this is that theuserwouldendup losing thegas fee that theypaid for theunbonding
transaction and subsequently would need to recreate it with the correct unbonding time.

Recommendations

Our initial recommendation for a fix was to modify the checks in Babylon such that the unbonding
time in the transaction would have tomatch an exactly set parameter.

However, a finality provider can abuse this. The way finality providers can provide trust to users is
by having one big self-delegation to themselves. This tells the users that the finality providerwill not
bemalicious because they have themost to lose if they get slashed.

Now, if everyone has the same unbonding time, then the finality provider can unbond before any of
the delegators. Once the unbonding transaction has gone through the time-lock period, the finality
provider can withdraw and subsequently selectively slash any delegator they want without conse-

Zellic © 2024 ← Back to Contents Page 17 of 26



Babylon Blockchain Security Assessment June 28, 2024

quence. This means that theremust be some leeway to set the unbonding time.

Our current recommendation is for the checks in the staking indexer (and other components) be
modified to be greater-than-or-equal-to checks, similar to how it is in Babylon.

Remediation

Babylon has informed us that they will leave the unbonding time checks as they are for now, since
the Babylon chain has not been implemented yet. They additionally provided the following context
for further clarity;

We find this a non-issue, as the lock-only system is intended to have more strict unbonding
time rules, requiring an exact unbonding time and not an unbonding time above a minimum.
The staking-indexer utilizes the lock-only system rules as it is only intended to be used for this
system. For phase-2, staking transactions are verified by the Babylon blockchain, which ap-
plies the phase-2 unbonding rules.

Zellic © 2024 ← Back to Contents Page 18 of 26



Babylon Blockchain Security Assessment June 28, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Overflowed transaction promotion

Automatically promoting the oldest overflow transaction that fits within the staking cap to active
status would make sense when the amount of active stake decreases due to time-lock expiration
or unbonding. While the Babylon team found this approach reasonable, they decided to keep the
system simple. The goal of the cap is to ensure a certain amount of Bitcoin remains locked in the
system, with any excess being unlocked.

4.2. Mitigating potential attacks throughmaximum staking value

Concerns were raised about the possibility of a single staker representing 100% of the BTC stake
on Babylon if the first staking transaction stakes the entire cap (without overflowing). This could
potentially allow them to attack proof-of-stake (POS) chains that honor Babylon stake in a way that
would not be possible without the cap. The team addressed two points in response to this concern.

First, toprevent thescenariowhereasingle staker candominate theBTCstakeonBabylon, themax-
imum staking value will be set much smaller than the overall staking cap.

Second, inPhase 1 of theBabylonprotocol, there is noPOSchain that couldbeattacked. The system
parameters are designed to be upgradable, allowing for the staking cap to be increased in the future
to accommodatemore participants.

4.3. Improving front-end security

The Babylon teamwas concerned about front-end attacks such as CDN hacks and BGP hijack, and
we discussed the appropriate security mechanisms for that.

XSS

The likelihood of XSS (cross-site scripting) in the current systemappears to be low. Firstly, there are
very few front-end pages, which reduces the attack surface. Secondly, most DOMelements are not
easily controllable by users, making it harder to inject malicious scripts. Lastly, the use of Next.js
makes it difficult for rendered values to be recognized asHTML tags, providing an additional layer of
protection.

Zellic © 2024 ← Back to Contents Page 19 of 26



Babylon Blockchain Security Assessment June 28, 2024

However, if an XSS vulnerability were to occur, it could have severe consequences, particularly in
relation to the connected OKX wallet. The OKX wallet signs transactions without validating if the
transaction data is related to staking. In the event of an XSS attack, an attacker couldmodify the API
endpoint or pollute the transaction data, redirecting the user's UTXO to their own address, conduct-
ing an arbitrary transfer of funds.

The primary defense against XSS vulnerabilities would be to exercise caution and follow best prac-
tices when adding new code to the staking dashboard or other front-end components interacting
with browser extensions like the OKXwallet. This includes validating and sanitizing user inputs, en-
coding output properly, implementingContent Security Policy (CSP), and regularly updating depen-
dencies to ensure they are free from known vulnerabilities.

CDN hacks

The dashboard is not vulnerable to CDN hacks because it does not load any scripts from external
resources.

At the application level, using nonexternal modules and subresource integrity (SRI) could be a way
to improve security at the front end. SRI hash calculation is typically performed during the web-
application development and deployment stages. Developers calculate the hash values of external
resources in advance and include them in the integrity attribute of the HTML. Therefore, the hash
values are already set before hacks occur.

BGP hijacking

From the perspective of defending BGP hijacks, RPKI (Resource Public Key Infrastructure) can be a
way that helps validate the legitimacy of BGP route announcements. It ensures that the entity an-
nouncing a specific IP-address range is indeed authorized to do so. By using a service providerwith
RPKI implemented, suchasCloudflareorAkamai, theycanbenefit fromanadditional layerofprotec-
tion at the network level more easily. For example, balancer.fi experienced BGP hijacking before,
but Cloudflare was able to issue a warning ↗.

Since BGP hijacking is an issue at the network-infrastructure level, it is difficult for the main web-
site itself to completely prevent BGP hijacking. In addition to applying RPKI, consistent monitoring
should be conducted to ensure that the routing and AS are correct, as well as the integrity of the
main page and third-party inclusions, to prevent abuse of themain site.

Zellic © 2024 ← Back to Contents Page 20 of 26

https://slowmist.medium.com/analysis-of-balancer-bgp-hijacking-incident-40adb6b285b5


Babylon Blockchain Security Assessment June 28, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in themodules and created awritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Transaction generation and signing

Specification

Transaction types

Babylonmakes use of two transaction-output types: staking outputs and unbonding outputs.

1. Staking outputs commit to a taproot disjunction of three possible execution paths.

• The timelock path, which requires the staker's signature and also requires a certain num-
ber of blocks to pass.

• The unbonding path, which requires the staker's signature as well as a threshold of
covenant emulation committee signatures.

• The slashing path, which requires the staker's signature, the finality provider's signature,
and a threshold of covenant emulation committee signatures.

2. Unbonding outputs commit to a taproot disjunction of two possible execution paths.

• The timelock path, similar to the staking output's (but with a shorter duration in blocks
than the staking output's timelock path).

• The slashing path, with identical requirements to the staking output's slashing path.

Miniscript formulations

The different taproot script paths can be described in theminiscript language as follows:

• Timelock path: and_v(vc:pk_k(staker_pk), older(timelock_blocks))

• Unbonding path: and_v(vc:pk_k(staker_pk), multi_a(covenant_threshold,
covenant_pk1, ..., covenant_pkn))

• Slashing path: and_v(vc:pk_k(staker_pk), and_v(vc:pk_k(finalityprovider_pk),
multi_a(covenant_threshold, covenant_pk1, ..., covenant_pkn)))

Security properties

The staking and unbonding transactions, along with their bitcoin scripts, have a few security prop-
erties. These are:

Zellic © 2024 ← Back to Contents Page 21 of 26



Babylon Blockchain Security Assessment June 28, 2024

• The timelock paths ensure that the system is fail-safe, in the sense that if all Babylon in-
frastructure ceases operating, the staker can eventually reclaim their stake with just the
Bitcoin network.

• The covenant emulation committee signatures on the slashing path allow the commit-
tee to enforce that slashing transactions have additional structure — that they send a
specified percentage of the input to an unspendable burn address and the remainder to
a change address controlled by the staker.

• The staker and covenant emulation committee signatures provide defense-in-depth
against slashing occurring in Phase 1. Phase 1 signing flows do not require the slash-
ing path to be presigned by the staker, and covenant-signer (the Phase 1 counterpart
to covenant-emulator) only signs unbonding paths.

• The finality provider's key is used to sign proof-of-stake blocks using EOTS, which leak
the key on equivocation (i.e., validator misbehavior). For Phase 2 in the future, stake will
only be considered active once the corresponding slashing path has been presigned by
thestakerandcovenantemulationcommittee,whichallowanyone tosubmit theslashing
transaction upon validator misbehavior.

• The covenant signatures on the slashing path are adaptor signatures encrypted towards
each finality provider to enforce atomic slashing (i.e., that anyone can ensure that if at
least one delegator to a finality provider is slashed, all delegators to that finality provider
are slashed).

babylon/btcstaking

The btcstaking library contains methods that construct and sign transactions in accordance with
the aforementioned specification.

• newBabylonScriptPaths, called by BuildStakingInfo (for the staking output) and Buil-
dUnbondingInfo (for the unbonding output), builds all three paths.

• buildTimeLockScript builds the timelock path, with lockTime as a parameter (see Find-
ing 3.1. ↗).

• buildSingleKeySigScript and buildMultiSigScript are used to build individual
signature-checking scripts andm-of-nmulti-sig–checking scripts.

• In newBabylonScriptPaths, unbondingPathScript requires the staker's signature (via
stakerKey) andcovenantQuorumof thecovenant signatures (fromthesetcovenantKeys).

• In newBabylonScriptPaths, slashingPathScript requires the staker's signature, one
finality-provider signature (from a set of fpKeys), and covenantQuorum of the covenant
signatures.

• SignTxWithOneScriptSpendInputFromTapLeaf signs Bitcoin transactions.
• EncSignTxWithOneScriptSpendInputStrict signs Bitcoin transactions as adaptor sig-
natures (where either the signature or the encryption private key can be recovered from
the other).

• ValidateSlashingTx ensures (among other properties) that a candidate slashing trans-
action has the expected slashing and change outputs.

Zellic © 2024 ← Back to Contents Page 22 of 26



Babylon Blockchain Security Assessment June 28, 2024

• BuildV0IdentifiableStakingOutputsAndTx constructs anunsignedpartial transaction
with no inputs and a staking output and OP_RETURN output withmetadata.

• ParseV0StakingTx validates that an existing transaction is a staking transaction.

btc-staking-ts

The btc-staking-ts library containsmethods that construct staking, unbonding, and slashing and
sign transactions in accordancewith the aforementioned specification.

• stakingTransaction generates an unsigned BTC staking transaction in PSBT format.
The output includes an unsigned PSBTwith the staking script, change, and optional data
embed script, alongwith the total transaction fee.

• withdrawTimelockUnbondedTransaction generates transactions to withdraw un-
bonded staking funds. They call the withdrawalTransaction function to create the
actual transaction.

• unbondingTransaction generates a transaction that converts staking funds to an un-
bonding state. It just returns PBST, needs to be signed with signTransaction or cre-
ateWitness, and signs transactions by using BIP-0332. The staking script allows users
to, on-demand, unbond their locked stake before the staking-transaction time lock ex-
pires, subject to an unbonding period.

• createWitness creates awitness for use in an unbonding transaction in PSBT format as,
apart from the staker’s signature, it also needs a set of signatures from the covenant em-
ulation committee. It combines the original witness data with covenant-related data to
generate a newwitness.

• slashingTransaction generates a transaction that sends a portion of the staking funds
to a slashing address and returns the remainder to the userwhen slashing conditions are
met. Theoutput consistsof two transactions: onesendingaportionof the input funds (in-
put * slashing_rate) to the slashing address and the other sending the remaining input
fundsminus fee (input * (1-slashing_rate) - fee) back to the user's address.

• withdrawalgeneratesa transaction thatconsumes thestakingoutput towithdrawfunds.
• buildSingleKeyScript and buildMultiKeyScript allow us to reuse functionality for
creating Bitcoin scripts for the unbonding script and the slashing script.

• buildMultiKeyScript uses BIP-0342 (Tapscript) to build multikey scripts. It validates
whether provided keys are unique and the threshold is not greater than the number of
keys. If there is only one key provided, it will return single-key–sig script. It checks that
the keymust be sorted and verifies there are no duplicates.

cli-tools

The cli-tools binary contains several commands relevant to transactions:

• create-phase1-staking-tx,whichusesbtcstaking.BuildV0IdentifiableStakingOutputsAndTx
to produce an unsigned partial staking transaction (to be completed with bitcoind's
fundrawtransaction and signrawtransactionwithwallet commands)

Zellic © 2024 ← Back to Contents Page 23 of 26



Babylon Blockchain Security Assessment June 28, 2024

• create-phase1-unbonding-request, which creates and signs (with the staker's key) an
unbonding transaction, given information on the corresponding staking transaction

• create-phase1-withdaw-request,whichcreatesandsigns (with thestaker's key)a time-
lock path of either a staking or an unbonding transaction

• run-unbonding-pipeline, which retrieves unbonding transactions from aMongoDB in-
stance populated by staking-api-service and sends them to covenant-signer to at-
tach covenant emulation committee signatures.

simple-staking

The simple-staking is a front-end dApp for creating Bitcoin staking transactions. It integrateswith
a set of extension wallets satisfying its expected interface. It is hosted by Babylon and serves as
a reference implementation for entities that want to set up their own staking website. This uses
btc-staking-ts for constructing staking/unbonding transactions, signs through extension wallets
imported, then submits to staking and withdrawal transactions to Bitcoin. It also submits any un-
bonding transactions to the staking-api.

btc-staker

The staker-cli command contains the following Phase 1 commands under the transaction sub-
command:

• check-phase1-staking-transaction validates a staking transaction with btcstak-
ing.ParseV0StakingTx and optionally checks that provided additional datamatches.

• create-phase1-staking-transaction creates an unsigned partial staking transaction
with btcstaking.BuildV0IdentifiableStakingOutputsAndTx, similarly to cli tools
create-phase1-staking-tx.

• create-phase1-unbonding-transactioncreatesaBIP174PSBT for anunbonding trans-
action, given the corresponding staking transaction to be used as input.

• create-phase1-staking-transaction-json is similar to create-phase1-staking-
transaction but takes its parameters through a JSON file instead of via CLI arguments.

The stakerd service contains behavior relevant to Phase 2, including automatically synchronizing
state between theBitcoin andBabylon chains and signing slashing transactions for staking transac-
tions that havebeenprocessedbyBitcoin but that are not yet recognized asdelegationsbyBabylon.

covenant-signer

The covenant-signer service exposes a "/v1/sign-unbonding-tx" route that provides covenant
emulation committee signatures for unbonding transactions whose parameters are in bounds,
whose only input is a staking output (that parses according to btcstaking.ParseV0StakingTx) that
has sufficient confirmationdepthon theBitcoin blockchain, andwhoseonly output is equal to anun-
bonding output reconstructed from the staking output's information. The covenant-signer service
does not sign slashing transactions, whichmitigates the risk of Phase 1 slashing.

Zellic © 2024 ← Back to Contents Page 24 of 26



Babylon Blockchain Security Assessment June 28, 2024

staking-indexer

The staking-indexer service scans the Bitcoin blockchain for staking, unbonding, and withdrawal
(i.e., timelock path) transactions that have the expected structure and that their values are in bounds
(includingcheckingstatefully that the total stakedoesnotexceedaparameterizedcap)and forwards
them as {ActiveStakingEvent,UnbondingStakingEvent,WithdrawStakingEvent}s to the queue.

staking-api-service

The staking-api-service service provides several HTTP GET endpoints that simple-staking
uses to display the state of Babylon as well as a POST endpoint that is used to initiate unbonding
(which saves the provided transactions and staker signature to the MongoDB table to be read by
unbonding-pipeline). It also receives messages from the various queues, keeping its database
state in sync with the Babylon and Bitcoin chains.

staking-expiry-checker

The staking-expiry-checker service connects to the sameMongoDB instance as staking-api-
service, which has a table of staking transactions togetherwith the heights theywill expire at. It re-
trieves transactions that haveexpiredby thecurrent height according to aBitcoin client andsubmits
ExpiredStakingEvents to the queue for them, removing them from the database upon successful
queue submission.

Zellic © 2024 ← Back to Contents Page 25 of 26



Babylon Blockchain Security Assessment June 28, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the canonical Bitcoin chain.

During our assessment on the scoped Babylon modules, we discovered four findings. No critical
issues were found. One finding was of medium impact, one was of low impact, and the remaining
findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 26 of 26


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Babylon
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Lack of input validations
	Invalid creation of unbonding TX leads to loss of gas
	Use alternative lib
	Potential issues with the MinUnbondingTime parameter

	Discussion
	Overflowed transaction promotion
	Mitigating potential attacks through maximum staking value
	Improving front-end security

	Threat Model
	Transaction generation and signing

	Assessment Results
	Disclaimer


