
BABE: Verifying Proofs on Bitcoin Made 1000x Cheaper

Sanjam Garg
1,2
, Dimitris Kolonelos

1
, Mikhail Sergeevitch

3
, Srivatsan Sridhar

4
, and David Tse

4,5

1
University of California, Berkeley

2
Exponential Science Foundation

3
Babylon Labs

4
Byzantine Research

5
Stanford University

Abstract

Endowing Bitcoin with the ability to verify succinct proofs has been a longstanding problem with

important applications such as scaling Bitcoin and allowing the Bitcoin asset to be used in other

blockchains trustlessly. It is a challenging problem due to the lack of expressiveness in the Bitcoin

scripting language and the small Bitcoin block space. BitVM2 [LAA
+
25] is the state-of-the-art verifi-

cation protocol for Bitcoin used in several mainnets and testnets [Bit25a, Cit25, BOB25a], but it suffers

from very high on-chain Bitcoin transaction fees in the unhappy path (over $14, 000 in a recent exper-

iment [LAA
+
25]). Recent research BitVM3 dramatically reduces this on-chain cost by using a garbled

SNARK verifier circuit to shift most of the verification off-chain [Rub24, Lin24], but each garbled cir-

cuit is 42 GiBytes in size, so the off-chain storage and setup costs are huge. This paper introduces

BABE, a new proof verification protocol on Bitcoin, which preserves BitVM3’s savings of on-chain

costs but reduces its off-chain storage and setup costs by three orders-of-magnitude. BABE uses a wit-

ness encryption scheme for linear pairing relations [GKPW24] to verify Groth16 proofs. Since Groth16

verification involves non-linear pairings, this witness encryption scheme is augmented with a secure

two-party computation protocol implemented using a very efficient garbled circuit for scalar multipli-

cation on elliptic curves. The design of this garbled circuit builds on the recent work of [EL26], which

gives an efficient garbling scheme to compute homomorphic MACs on such curves.

1

Contents

1 Introduction 4

1.1 Motivating Example . 4

1.2 Verifying Proofs on Bitcoin . 4

1.2.1 BitVM and BitVM2 . 4

1.2.2 BitVM3 . 5

1.3 New Verification Protocol: BABE . 6

1.3.1 Witness Encryption . 7

1.3.2 Witness encryption for linear pairings . 7

1.3.3 Garbled Circuit for Scalar Multiplication . 9

1.4 Other Applications . 9

2 Preliminaries 10

2.1 Basic Notation . 10

2.2 Bilinear Groups . 10

2.2.1 Generic Bilinear Group Model . 10

2.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs) 11

2.3.1 The Groth16 SNARK . 12

2.4 Extractable Witness Encryption . 13

2.5 Garbling Schemes . 14

2.6 The Bitcoin Ledger . 15

3 The BitVM-core Primitive 18

4 Witness Encryption for Linear Pairing Relation 20

5 Garbled Circuit for BN254 Scalar Multiplication 22

5.1 Overview . 22

5.2 Elliptic Curve Addition and Notation . 24

5.3 Decomposable Randomized Encodings: Definitions and Preliminaries 27

5.4 Decomposable Randomized Encodings Constructions . 28

5.5 DRE for the Scalar Multiplication . 29

5.6 Completing the Garbled Circuit . 31

6 BABE Protocol 33

6.1 Honest Setup Protocol . 33

6.1.1 Setup Phase . 34

6.1.2 Proving Phase . 35

6.1.3 Transaction Graph . 36

6.2 Verifying Setup Correctness . 38

7 Security Proof 39

7.1 Security Proof Assuming Honest Setup . 39

7.1.1 Proof of Honest-Setup u-Robustness . 40

7.1.2 Proof of Honest-Setup Knowledge Soundness . 41

2

8 Extensions and Optimizations 43

8.1 Multiple Verifiers and Provers . 43

8.2 Optimistic Path . 43

8.3 Compressed Groth16 Proof . 43

9 Evaluation 44

9.1 Honest Setup . 44

9.2 Cut-and-Choose Setup Verification . 45

9.3 Soldering (zk-SNARK-soldering) . 46

9.4 Verifiable Shamir Secret Sharing . 47

A Honest-Setup BABE Protocol Details 54

A.1 Transactions . 54

B Protocol for Malicious Security 55

3

1 Introduction

1.1 Motivating Example

Bob has 1 BTC and would like to use it as collateral to borrow $50K worth of stablecoins for real-world

use. Currently Bob’s only options are to go to a centralized entity such as Tether to directly borrow, or

to a centralized entity like Coinbase which mints Bob a wrapped asset cbBTC that he can use in a smart

contract lending protocol on Ethereum or other chains. However, in both cases the centralized entity

would take custody of Bob’s BTC, violating the core ethos of Bitcoin: trustlessness.1 If Bob had 1 ETH,

on the other hand, he would be able to participate directly in a trustless lending protocol like Aave on

Ethereum without going through a centralized entity. Unfortunately, the Bitcoin chain does not support

smart contract protocols such as Aave. This begs the question:

How do we allow the $1.8 trillion worth of BTC to participate trustlessly in smart contracts like Aave on
chains like Ethereum?

Consider what such a protocol would look like:

1. Borrower Bob deposits his BTC using a Bitcoin transaction;

2. A lending position is created on Ethereum with the BTC as collateral and $50K in stablecoin is lent

from a lender Larry to Bob;

3. If Bob returns the loan, then the BTC collateral is withdrawn by Bob;

4. If Larry liquidates the loan because BTC price has dropped below a threshold, then the BTC collateral

is withdrawn by Larry.

To achieve step 2 trustlessly, Bob has to prove a certain state of the Bitcoin chain to Ethereum. This

proof can be verified by smart contracts which already exist on Ethereum [Cat25]. To achieve steps 3 and 4

trustlessly, each party has to prove a certain state of the Ethereum chain to Bitcoin so that he can withdraw.

Due to the rudimentary nature of the Bitcoin scripting language, however, even a succinct proof verifier

takes about 900Mbytes of Bitcoin block space, equivalent to 225 Bitcoin blocks [LAA
+
25]. Moreover, this

verifier has to be submitted on-chain as a Bitcoin transaction every time a proof needs to be verified, thus

rendering it totally impractical (the transaction fees will be millions of dollars).

Note that the lending example is only one application. The ability to verify proofs is important for any

application in which the withdrawal of the deposited BTC depends on the state of another chain, such as

light-client based Bitcoin bridges to rollups and other chains [LAA
+
25].

1.2 Verifying Proofs on Bitcoin

1.2.1 BitVM and BitVM2

BitVM [Lin23, AAL
+
24] initiated a line of work to reduce the on-chain footprint of proof verification using

optimistic methods. It is a two-party protocol between the Prover and the Verifier, with the Verifier helping

Bitcoin verify the Prover’s proof by challenging the Prover if its proof is invalid. This protocol ends if either

the Prover wins, i.e. convinces Bitcoin its proof is correct, or the Verifier wins, i.e. convinces Bitcoin the

Prover’s proof is incorrect. This framework can be applied to our motivating example: when Bob tries to

withdraw, he is the Prover, with Larry being the Verifier. Bob wins if he succeeds in withdrawing, and

1

In Satoshi Nakamoto’s initial post introducing Bitcoin to the world, he described it as: “It’s completely decentralized, without

relying on central servers or trusted parties, because everything is based on crypto proofs rather than trust.” [Nak09]

4

Larry wins if he succeeds in stopping Bob from withdrawing. (We formalize the BitVM setting in Sec. 3

and use it to prove security in this paper.)

The state-of-the-art protocol in that line of work is BitVM2 [LAA
+
25]; this protocol follows the frame-

work of naysayer proofs [SGB24] where the Prover posts the intermediate states of the proof verification

computation trace on-chain and the Verifier can challenge a specific state transition by posting the correct

verification trace only for that state transition. Even though this drastically reduces the on-chain costs as

compared to posting the entire verification trace, the on-chain cost is still substantial as the intermediate

states have to be signed by Lamport signatures [Lam79], verifiable on Bitcoin using hashlocks. (Lamport

signatures are very large, requiring 256 bits per bit of each intermediate state.) In a mainnet experiment

on Bitcoin [LAA
+
25], the on-chain footprint of posting these dispute transactions is over 5.4 Mbytes,

costing over $15, 000 of transaction fees. This high challenge cost necessitates large amounts of capital

locked as a bond to pay for the challenge. Moreover, the Bitcoin transactions involved in the challenge

are non-standard
2
and require special services for submission to Bitcoin, thus increasing fee rates and

centralization risks.

1.2.2 BitVM3

To reduce the on-chain costs of BitVM2, [Rub24] suggested using garbled circuits (GC) to shift the proof

verification off-chain. Follow-up works include [Lin24, Che25, Eag25] under the general umbrella of

BitVM3. Garbled circuits, originally invented by Yao [Yao82] for private two-party computation, are used

in BitVM3 for authenticated computation. In the two-party setting, it works as follows (Fig. 1). At setup,

the Prover generates a secret msg and shares a garbled circuit with the Verifier. The garbled circuit im-

plements a SNARK verifier. The Prover commits to the hashed value H(msg) to create a hash lock such

that the Verifier can open the hash lock and stop the Prover’s claim if the Verifier can learnmsg. The Ver-
ifier stores the garbled circuit. At the proving phase, the Prover posts a Lamport signed proof on Bitcoin,

and the Verifier feeds the signed proof as input into the garbled circuit, with the Lamport signatures as

input labels.
3
The garbled circuit is designed to output the Prover’s secret msg if and only if the proof is

invalid. So if the proof is invalid, the Verifier will be able to stop the Prover by opening the hashlock. Oth-

erwise, after a timeout, the Prover will win. This is basically a hash-time lock contract (HTLC) [Wik21]

used in many Bitcoin protocols including atomic swaps [Wik20, Her18], Lightning [PD16], and Bitcoin

staking [DLT
+
24], generalized to verification of signatures by discreet log contracts [Dry17], and finally

generalized by BitVM3 to verification of arbitrary computations using the SNARK verifier garbled circuit.

The on-chain cost of BitVM3 compared to BitVM2 is reduced from $14, 000 to less than $40 because

only the signed proof has to be put on-chain instead of the signed intermediate states, and a hashlock

script of negligible size replaces the verification traces. The challenge for BitVM3 is the significant off-
chain costs. A Boolean garbled circuit for the Groth16 verifier [Gro16] was implemented [Bit25b], and

even with free-XOR [KS08] and privacy-free half-gate [ZRE15] optimizations, the garbled circuit size is

still 42 Gibytes (total of 10 B gates and 3 B non-free gates). Garbling time per circuit is 6 minutes on

a single core. Moreover, proving the correctness of the garbled circuit with a zero-knowledge proof is

infeasible and with a standard cut-and-choose method [LP07] requires garbling many instances of the

circuits, translating to a total setup time of hours.

The large size of the garbled circuit for the Groth16 verifier primarily stems from the expensive pairing

operations on the BN254 curve [BN06]. By replacing the Groth16 by a designated-verifier SNARK and by

replacing the BN254 curve with a curve on the binary field, [Eag25] shows that the garbled circuit size

can be reduced to 12 Mbytes. Unfortunately, the security of binary curves is not widely accepted by the

2

Non-standard transactions are valid as per Bitcoin consensus rules but most miners do not consider them for inclusion in the

blocks they mine because, for example, the transactions are too large.

3

In an uncanny coincidence, Yao’s input labels correspond exactly to a Lamport signature and vice-versa.

5

Verifier
evaluates

Prover claims
with signed
witness σ

Timeout

Verifier reveals
secret msg

Prover wins

Verifier wins

Prover
signs proof

Conditional disclosure of secret

Garbled
Circuitw msg if invalid w

⊥ if valid wσ

Figure 1: Verification on Bitcoin using a SNARK verifier garbled circuit. This is a solution to a crypto-

graphic problem called conditional disclosure of secrets [GIKM00]. A Lamport signature σ serves both

Bitcoin verification and as input labels to the garbled circuit.

BitVM2 BitVM3 BABE

102

103

104

C
os

t (
U

SD
)

(a) On-chain Cost

$14,211

$37.65 $37.82

376×

BitVM3 BABE

103

104

105

Ti
m

e
(m

s)

(b) Setup Time

353.7 s

174.9 ms

2,022×

BitVM3 BABE
102

103

104

105

Ti
m

e
(m

s)

(c) Decryption Time

352.1 s

126.5 ms

2,783×

BitVM3 BABE

102

103

104

St
or

ag
e

(M
iB

)

(d) Storage Requirements

40.5 GiB

22.2 MiB

1,868×

CPU: AMD Ryzen 7 7840U; timing: single-threaded. BTC price: $95, 500 (Jan 3, 2026). Fee rate: 2.2sats/vB for BitVM3, BABE,

11sats/vB for BitVM2 (premium rate for non-standard transactions). Details: Sec. 9.

Figure 2: On-chain and off-chain costs of BitVM2 [LAA
+
25], BitVM3 (Boolean garbled circuit for Groth16

verification) [Bit25b], and BABE. On-chain costs are derived from experiments on Bitcoin mainnet. These

metrics are in the honest-setup setting where the Prover and Verifier are assumed to be honest during setup

(but can be malicious afterwards). Sec. 9 evaluates multiple methods for achieving malicious security.

community and so this approach is not currently pursued in practice. Arithmetic circuits were proposed

recently [FBFL25] for garbling the Groth16 verifier, but do not promise large gains.

1.3 New Verification Protocol: BABE

In this paper, we introduce a new verification protocol, BABE, which verifies Groth16 proofs (on the stan-

dard BN254 curve) on Bitcoin. BABE improves the off-chain costs of the existing Groth16 verifier garbled

circuit [Bit25b] in BitVM3 by a factor of more than 1000 while preserving its low on-chain costs relative

to BitVM2 (Fig. 2).

Instead of using a garbled circuit for theGroth16 verifier, our approach useswitness encryption [GGSW13]

as a starting point. In simple terms, a witness encryption (WE) scheme for a relation R allows one to en-

crypt a secret under an NP statement 𝕩 ∈ R such that anyone that knows the corresponding witness 𝕨
can decrypt.

4

4

Technically, this describes a stronger notion of witness encryption called “extractable witness encryption” [GKP
+
13]. For

the sake of this overview we omit this delicate difference; we elaborate in the technical sections.

6

msg if valid w
⊥ if invalid wDecrypt

Witness Encryption

Prover claims
with witness w

Prover reveals
secret msg

Verifier wins

Prover wins

Prover

w

Timeout

Figure 3: Verification on Bitcoin using witness encryption (if it were practical). Note that unlike under the

conditional secret disclosure formulation, the secret is leaked when the proof is valid.

3. sign & post

Prover P

Setup Phase

Proving Phase

2. Send Ciphertexts ctsetup, ctGC

1. Encrypt secret msg
Generate garbled circuit

1. Generate
proof (π1, π2, π3)

π1

3. Evaluate GC and
decrypt secret msg

Verifier V

3. sign & post

Prover P Verifier V

π1

2. Compute input
labels L(π1)

L(π1)

msg

Deposit BTC

Withdraw BTC

Bitcoin

Bitcoin

L(π1)

Figure 4: BABE: Verification of arbitrary computation on Bitcoin using a combination of linear witness

encryption and an interactive protocol that allows the Prover to compute rπ1 without knowing r.

1.3.1 Witness Encryption

Let RG be the relation for Groth16 verification, i.e. 𝕩 is the statement (public inputs), 𝕨 is the Groth16

proof (witness of this relation), and (𝕩,𝕨) ∈ RG is true iff the proof𝕨 is valid for the statement 𝕩. If we
have a solution for WE onRG, then we can use that to solve the Prover-Verifier problem above (Fig. 3).

The Verifier plays the role of the WE-encryptor. At setup, it encrypts a secretmsg using the statement

𝕩 to generate ciphertext ct. It creates a hash lock by committing to the hashed valueH(msg) of the secret
msg. The Prover plays the role of the WE-decryptor and stores the ciphertext ct. At the proving phase, the
Prover obtains the proof 𝕨 of the application-specific relation, and runs Dec(ct,𝕨) to decrypt the secret

msg. This is used to open the hash lock to claim the locked funds.

1.3.2 Witness encryption for linear pairings

Even before the advent of BitVM, witness encryption had already been proposed as a technique to do

trustless verification on Bitcoin (in the context of building Bitcoin bridges) [Hio22]. Unfortunately, witness

7

encryption for all relations is a notoriously challenging cryptographic primitive, and to date it lacks an

efficient realization for general relations.

Specifically, the Groth16 relationRG involves verifying an equation containing pairing terms:

e(π1, π2) + e(π3, x1) = x2 (1)

Here, 𝕨 = (π1, π2, π3) is the proof, 𝕩 = (x1, x2) is the statement. The issue is the pairing between the

two witness elements (e(π1, π2)): There is no known efficient construction of WE for this type of relation.

However, we do know [BC16, GKPW24] an efficientWE scheme for relations that are pairing equations

linear in the witness𝕨. Consider for example, the linear pairing relation e(w1, x1)+e(x2, w2) = x3. Then
we can obtain a WE scheme as follows:

5

• Relation: Rlinear =
{
(𝕩 = (x1, x2, x3);𝕨 = (w1, w2)) : e(w1, x1) + e(x2, w2) = x3

}
• Encryption (for 𝕩): ct = (rx1, rx2, rx3 +msg)

• Decryption (using 𝕨): msg = ct3 − e(ct2, w2)− e(w1, ct1)

where r is an additional private random large field element generated by the WE-encryptor. This simple

yet powerful observation has been leveraged to build efficient witness encryption schemes for specific rela-

tions across a wide range of cryptographic settings, both implicitly (e.g. [BL20, FKdP23, CFK24, FHAS24])

and explicitly following [GKPW24] (e.g. [CGPW25, AFP25, BFOQ25, MLLP25]), and has been recently

formalized in [GHK
+
25]. To adapt this WE scheme for Groth16 verification, we treat one of the proof

elements, π1, as a public input x0 of the WE relation so that the Groth16 relation (Eq. (1)) turns into:

e(x0, π2) + e(π3, x1) = x2, (2)

a linear pairing relation in the witness (π2, π3) and public inputs (x0, x1, x2). Following the aforemen-

tioned framework for linear pairing equations, the ciphertext is given by:

ct = (rx0, rx1, rx2 +msg). (3)

But in reality, x0 := π1 is not available during setup, which means the ciphertext (Eq. (3)) cannot be

entirely computed during setup; the computation must be deferred to the proving phase. In particular, the

Prover must be able to compute rπ1 from π1 in the proving phase without knowing the private randomness

r of the Verifier.
To achieve this, the Prover and the Verifier will set up a maliciously secure two-party computation

protocol (Fig. 4). This two-party computation takes as the Verifier’s input the private randomness r at

setup and as the Prover’s input the proof element π1 in the proving phase, and either the Prover learns

rπ1 without learning r, or the protocol aborts and the Prover wins.

Concretely, during setup, the Verifier creates a garbled circuit ctGC that hard codes the randomness r
and shares it with the Prover. This garbled circuit computes rπ1 given input labels for π1 with r private

from the Prover. During the proving phase, when the Prover has the Groth16 proof, the Prover reveals

π1 on-chain and obtains the input label L(π1) from the Verifier. If the Verifier responds, then the Prover

can compute rπ1 by inputting the labels into the garbled circuit. If the Verifier does not respond within a

timeout or does not send the correct labels for the Prover’s π1, the protocol halts and the Prover wins.

Once the Prover has learned rπ1, together with ctsetup := (rx1, rx2 + msg) which it obtained from

the Verifier at setup, it has the entire WE ciphertext (Eq. (3)). Now the Prover can use the rest of the proof

(π2, π3) to decrypt the secret msg as in linear witness encryption and wins, provided that the proof is

valid.

5

Formally, for the security proof we need the “masking” term of the ciphertext to be passed through a random oracle, i.e.

RO(rx3). For simplicity, we omit this technicality from this overview and refer to Sec. 4.

8

1.3.3 Garbled Circuit for Scalar Multiplication

In BitVM3, the garbled circuit (GC) allows authentic evaluation of a Groth16 verifier to reveal a secret. In

BABE, the garbled circuit allows evaluation of a scalar multiplication rπ1 with privacy on r. So the garbled
circuits play a totally different role in the two protocols. But more importantly, computing a single scalar

multiplication is much simpler than computing a Groth16 verifier, which involves multiple pairings. More

specifically, our goal is to design an efficient garbled circuit that

• takes as input labels a Lamport signature on π1 = (x, y) ∈ 𝔽2p (Bitcoin friendly).

• Outputs rπ1.

A natural first approach is to leverage Yao’s garbling [Yao82] for the scalar multiplication rπ1. While this

approach offers a substantial ≈ 5× improvement over the Groth16 verifier garbled circuit (BitVM3), the

resulting solution would still be on the order of Gbytes. Essentially, the cost comes from the fact that

one has to encode large (𝔽p, where log(p) ≈ 254) field operations into binary circuits,
6
which introduces

unnecessary overhead.

In this direction, a recent innovation [EL26] advocates an approach to keep most of the operations of

the garbled circuit at the level of the relevant elliptic curve groups. The paper’s focus is on the concept

of vector homomorphic MACs (HMACs) which allows free additions of BN254 group elements, analogous

to free-XORs for bits. The main result is an efficient garbling method to compute the components of the

vector HMAC of a group element G, each of which effectively involves adding a fixed group element to

G. The construction directly works over 𝔽p and builds on the Ishai-Wee partial garbling for branching

programs [IW14], which directly treats 𝔽p-elements without decomposing them to binary. Their main

observation is that for BN254, a group addition to a fixed group element can be expressed as a low-degree

polynomial f , such that π1+ϕ = fϕ(x, y)where x, y are the x and y coordinates of π1, (and thus a branch-
ing program) and garbled with [IW14]. Notably, the Ishai-Wee garbled circuit is information-theoretic and

free, meaning that the garbled circuit has zero size, and the only cost comes from the encoded input (i.e.

the labels). Crucially, the Ishai-Wee labels are not Bitcoin-friendly (i.e. Lamport signatures) as is the case

for Yao. Therefore, the proposal suggests a pre-processing garbled circuit to compute the Ishai-Wee labels

from the Lamport signature on π1.
Building on this work, we develop a highly efficient garbling scheme for BN254 scalar multiplica-

tions. First, using the technique of decomposable randomized encodings [IK00, IK02, AIK04, Ish13] for

linear operations, we decompose the BN254 scalar multiplication problem into the problem of comput-

ing a 254-dimensional vector HMAC. Second, to garble each component, we again rely on DRE for linear

operations rather than the arguably more complex branching programs technique of Ishai-Wee used in

[EL26]. Our core observation is that we can ‘linearize’ the BN254 group addition function fϕ(x, y) to

f̃ϕ(x, y, x
2, y2, xy), by simply giving low-degree monomials as inputs. Now our f̃ϕ is a linear function.

Then the operation boils down to an inner-product, amenable to the [Ish13] DRE. The computation of the

low-degree monomials is now deferred to the Yao garbled circuit, which turns out to be of low cost.

Comparing to [EL26], our technique is arguably simpler, allowing for a full security proof derived

directly from the well-established decomposable randomized encodings for linear relations [FKN94, Ish13]

(and a composition theoremwithin). Our final GC construction (after some optimizations) is about 22MiB.

1.4 Other Applications

In addition to Bitcoin, several other blockchains (e.g. Cardano) do not natively support verification of

general-purpose proofs. In our system BABE, the bulk of the protocol runs off-chain, and is therefore

6

Recall that Yao’s garbling works on binary circuits.

9

largely blockchain-agnostic. The on-chain component requires only very basic functionality including

hashlocks, timelocks, and signature verification, which most blockchains already support. As a result,

BABE or a system built on top of it, could be deployed across a broad class of chains, unlocking a wide

range of applications beyond Bitcoin.

From a separate perspective, this work speaks to a broader usability bottleneck in cryptography: non-
black-box techniques are often considered impractical because they require “opening up” cryptographic

algorithms and expressing them as circuits, which can incur substantial overhead. A canonical example

comes from zkSNARKs, where proving statements about cryptographic computations requires unrolling

those computations into circuits, something that was historically seen as prohibitive. Over time, however,

modern SNARK constructions and implementations have shown that these efficiency barriers can be over-

come and that doing so can have far-reaching practical impact [BCTV14, OWWB20, BCMS20, BMM
+
21,

GMN22, KST22, CFH
+
22, GGW24, OKMZ25, WOS

+
25, GGKS25].

Secure computation (e.g., via garbled circuits) faces a closely related challenge today. Despite sig-

nificant progress, general-purpose garbling still performs poorly on many cryptographic workloads and

other non-black-box computations, which remain expensive in practice. In this work, we focus on a highly

specialized cryptographic task of real-world concern and demonstrate practical performance. Beyond the

immediate application, this suggests a broader takeaway: with the right specialization, non-black-box uses

of cryptography can bemade practical for secure computation tasks, potentially enabling new deployments

in a variety of settings.

2 Preliminaries

2.1 Basic Notation

We use λ for the security parameter and negl(λ) for a negligible function, i.e., a function that is less

than 1/f(λ) for any polynomial f . We also define κ to be a statistical security parameter. The security

parameters are implicitly taken as input to every algorithm and, for brevity, we omit explicitly writing it.

For eventsA andB, we letPr[A] ≈ϵ Pr[B] denote that |Pr[A]−Pr[B]| ⩽ ϵ. Row vectors will be written in

small bold font, e.g. x = (x1, . . . , xn) and matrices in capital bold, e.g. A = (aij)i,j . We use the operator

’×’ for the matrix multiplication and the operator ⊗ for the tensor product. x←$ X is used to imply that

x is being uniformly sampled from a finite set X . “PPT” stands for Probabilistic Polynomial-Time. Every

algorithm (including the adversaries) is stateful.

2.2 Bilinear Groups

A Bilinear Group BG, generated as (𝔽q,𝔾1,𝔾2,𝔾T , g1, g2, e)← BG(1λ), is specified by a field 𝔽q of prime

order q = 2Θ(λ)
, three groups 𝔾1,𝔾2,𝔾T (the first two we call “source groups” and the third “target

group”), a bilinear map e : 𝔾1 × 𝔾2 → 𝔾T that we call “pairing” and random generators g1, g2 for 𝔾1,𝔾2

respectively. We use the implicit notation, i.e., [x]s := xgs and more generally [A]s represents a matrix

of the corresponding group elements, for s ∈ {1, 2, T}. Also, we denote the group operation additively,

[x]s + [y]s = [x+ y]s, for s ∈ {1, 2, T}. The pairing has the property that e([x]1, [y]2) = xye([1]1, [1]2).
In our constructions, we will omit writing explicitly the Bilinear Group in the algorithms’ inputs, even

though it is implicitly taken as input.

2.2.1 Generic Bilinear Group Model

The Generic Group Model (GGM) [Sho97, Mau05] is an idealized model, that formalizes a ‘generic’ adver-

sary. That is, the adversary does not have access to the concrete representation of the the group elements

10

but can only use generic group operations (addition, inverse element, scalar multiplication). This model

captures the ‘algebraic’ attacks that an adversary can perform.

In this work, we use the Maurer’s GGM [Mau05], which is extended to Bilinear Groups by [BBG05].

There, the adversary makes oracle queries for each generic group operation they wish to perform and

receives a handle for the resulting group element, instead of the actual element itself. All group elements

resulting from the adversary’s queries are recorded—together with their handles—in three listsL1,L2,LT

for 𝔾1, 𝔾2 and 𝔾T respectively.

A standard GGM technique in security proofs is the ‘symbolic’ equivalence. We call ‘symbolic’ exper-

iment (and symbolic group representation, respectively) the model where polynomials instead of group

elements are stored and polynomial operations instead of group operations are performed. The formal

variables of the polynomials are the initial elements that the adversary received. For example, a generic

adversary to the discrete logarithm problem is initially receiving [1], [x]; thus, the formal variables are

1, X , and then can perform any generic group operation which is going to be symbolically performed

with the corresponding polynomials in ℤp[1, X].

Master Theorem. We recall the ‘Master Theorem’ [BBG05, Boy08]. The Master Theorem is used to

determine the probability loss between the symbolic group representation and the actual generic group

representation, where the formal variables are instantiated.

Theorem 1 (Master theorem [BBG05, Boy08]). Let L1 ∈ ℤp[X1, . . . , Xn]
ν1 , L2 ∈ ℤp[X1, . . . , Xn]

ν2 ,
LT ∈ ℤp[X1, . . . , Xn]

νT be three lists of n-variate polynomials over ℤp of maximum degree dL1 , dL2 , dLT
,

respectively. Let f ∈ ℤp[X1, . . . , Xn] be an n-variate polynomial of degree df and denote d = max{dL1 +
dL2 , dLT

, df}, ν = ν1 + ν2 + νT . If f is independent of (L1,L2,LT), then for any generic adversary A
that makes at most q group oracle queries:∣∣∣∣∣Pr

[
A

(
p, h1[L1(x)],

h2[L2(x)], hT [f(x)]

)
= 1

]
− Pr

[
A

(
p, h1[L1(x)],

h2[L2(x)], hT [r]

)
= 1

]∣∣∣∣∣ ⩽ (q + ν + 2)2d

2p
,

where h1, h2, hT denote the corresponding handles, and the probabilities are taken over the choices of x ←$

(ℤp)
n and r ←$ ℤp.

Here f -depenence onL = (L1,L2,LT)means that the polynomial f is in the span of the polynomials

in the listC(L) := {L1⊗L2}∪LT (intuitively {L1⊗L2} are all the elements in𝔾T that can be computed

using pairings). Naturally, the opposite case is called f -independence of L.

2.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs)

We recall the definition of SNARKs. In this workwe do not focus on the zero-knowledge property, therefore

we omit it.

Definition 1 (SNARKs). ASNARK for a family of relationsRfam is a tuple of three algorithms (Gen, Prove, Verify):

• Gen(R)→ (crs): On input a relationR ∈ Rfam generates a common reference string crs.

• Prove(crs,𝕩,𝕨)→ π: On input the common reference string crs, a statement𝕩 and the corresponding
witness 𝕨 computes a proof π.

• Verify(crs,𝕩, π)→ 0/1: On input the common reference string crs, a statement 𝕩 and a proof π the
verification algorithm outputs either 1 for accept or 0 for reject.

11

It is further required that the following properties hold.
(Perfect) Correctness. For every relationR ∈ Rfam, and every statement-witness pair (𝕩,𝕨) ∈ R:

Pr

[
Verify(crs,𝕩, π) = 1 :

crs← Gen(R)
π ← Prove(crs,𝕩,𝕨)

]
= 1

Knowledge Soundness. For every PPT adversarial Prover P∗, there exists a PPT extractor E such that for
every benign auxiliary input aux ∈ {0, 1}poly(λ), and every relationR ∈ Rfam:

Pr

 Verify(crs,𝕩, π) = 1
∧(𝕩,𝕨) /∈ R :

crs← Gen(R)
(𝕩, π∗)← P∗(crs, aux)

𝕨← E(crs, aux)

 = negl(λ)

Succinctness. There exists a universal polynomial p(·) such that, for every security parameter λ ∈ ℕ, every
relationR ∈ Rfam, and every statement-witness pair (𝕩,𝕨):

• An honestly generated proof π has size p(λ+ log |𝕨|).

• The Verifier algorithm Verify(crs,𝕩, π) runs in time p(λ+ |𝕩|+ log |𝕨|).

2.3.1 The Groth16 SNARK

We recall the Groth16 proof system [Gro16], excluding the zero-knowledge property.

Rank-1 constraint satisfiability (R1CS). Groth16 works for relations encoded with the rank-1 con-

straint satisfiability (R1CS). Formally, an R1CS relation is of the form:

R =
{
(x;w) : (A× zT) ◦ (B × zT) = C × zT ∧ z = (x∥w)

}
where the relation is characterized by the fixed matrices A,B,C ∈ ℤn×m

p , the statement x ∈ ℤℓ
p is an

ℓ-sized vector, the witness w ∈ ℤm−ℓ
p is an (m − ℓ)-sized vector, and z ∈ ℤm

p is called the ‘extended

witness’, consisting of the witness and the statement. Here ’◦’ is the Hadamard product. R1CS generalizes

arithmetic circuits.

Throughout the paper, when we deal with an R1CS relation we explicitly denote 𝕩 := x and 𝕨 := w
to highlight that our statement and witness are vectors.

TheGroth16 construction. For the proof system each column of the R1CSmatricesA,B,C is interpo-

lated into polynomials as: ai(X) =
∑n

j=1 ai,jLj(X), bi(X) =
∑n

j=1 bi,jLj(X), ci(X) =
∑n

j=1 ci,jLj(X)
for each i ∈ [m], where Lj(x) the corresponding Lagrange polynomial. Then the relation boils down to

the following polynomial relation:(
m∑
i=1

ziai(X)

)(
m∑
i=1

zibi(X)

)
−

m∑
i=1

zici(X) = q(X)V (X)

where V (X) =
∏n

i=1(X −ωi) is the vanishing polynomial. This polynomial relation is essentially equiv-

alent to the R1CS satisfiability (we refer to [GGPR13, PHGR13, Gro16] for more details).

The actual Groth16 SNARK is described below.

12

• Gen(R)→ crs: Samples uniformly τ, α, β, γ, δ ←$ ℤp and outputs:

crs =

{{
[α]1, [β]2, [γ]2, [δ]1, [δ]2,

{ [
τ i
]
1
,
[
τ i
]
2

}n−1

i=0
,

{[
V (τ)τ i

δ

]
1

}n−2

i=0

,

{
[ai(τ)]1, [bi(τ)]1, [bi(τ)]2

}m

i=1
,

{[
βai(τ) + αbi(τ) + ci(τ)

γ

]
1

}ℓ

i=1

,{[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

}m

i=ℓ+1

}

• Prove(crs,x,w, π)→ π: Sets z = (x∥w). Computes the quotient polynomial q(X) =
∑n−2

i=0 qiX
i =⌊

(
∑m

i=1 ziai(X))(
∑m

i=1 zibi(X))−
∑m

i=1 zici(X)

V (X)

⌋
and then outputs π = (π1, π2, π3), where:

π1 = [α]1 +
m∑
i=1

zi[ai(τ)]1 (4)

π2 = [β]2 +

m∑
i=1

zi[bi(τ)]2 (5)

π3 =
m∑

i=ℓ+1

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+
n−2∑
i=0

q̃i

[
V (τ)τ i

δ

]
1

(6)

• Verify(crs,x, π)→ 0/1: Outputs 1 iff:

e(π1, π2) = e ([α]1, [β]2) e

(
ℓ∑

i=1

xi

[
βai(τ) + αbi(τ) + ci(τ)

γ

]
1

, [γ]2

)
e(π3, [δ]2) (7)

Theorem 2 (Groth16 Security [Gro16]). The above protocol is a SNARK, satisfying Perfect Correctness and
Knowledge Soundness in the Generic Bilinear Group Model.

Remark 1 (Deterministic Groth16). We highlight that since we do not consider zero-knowledge, the Prove
algorithm is deterministic, thus π = Prove(crs,x,w) a unique proof (for (x,w)).

2.4 Extractable Witness Encryption

We recall the definition of Extractable Witness Encryption [GKP
+
13]. Informally, an extractable witness

encryption scheme for a relation R allows one to encrypt a message under an NP statement 𝕩 ∈ R such

that anyone can decrypt if they know the corresponding witness 𝕨, such that (𝕩,𝕨) ∈ R.

Definition 2. An Extractable Witness Encryption (WE) scheme for a relationR consists of three algorithms
WE = (Gen, Enc,Dec) such that:

• Gen(R)→ crs: Takes as input the relation and outputs a common reference string crs.

• Enc(crs,𝕩,msg) → ct: Takes as input the common reference string crs, a statement 𝕩 and a message
msg and outputs a ciphertext ct.

• Dec(crs, ct,𝕨)→ msg: Takes as input the common reference string, a ciphertext ct and a witness wit
and outputs a message msg.

Furthermore it should satisfy the following properties.

13

Correctness. For every statement-witness pair (𝕩,𝕨) ∈ R and message msg:

Pr

[
Dec(crs, ct,𝕨) = msg :

crs← Gen(R)
ct← Enc(crs,𝕩,msg)

]
= 1 (8)

Security. An Extractable Witness Encryption for a relation R is secure if for all PPT adversary A, there
exists a PPT Extractor E such that for all benign auxiliary input aux ∈ {0, 1}poly(λ), if

Pr

 b = b′ :

crs← Gen(R)
(𝕩,msg0,msg1)← A(crs)

b←$ {0, 1}
ctb ← Enc(crs,𝕩,msgb)

b′ ← A(ctb, aux)

 =
1

2
+ ϵ (9)

then

Pr[(𝕩,𝕨) ∈ R : 𝕨← E(crs,𝕩, aux)] ≥ ϵ− negl(λ) (10)

Remark 2 (ExtractableWEvs (Plain)WE). Witness Encryptionwas originally introduced byGarg et al. [GGSW13]
with a weaker security property that, roughly, the scheme is secure if 𝕩 /∈ R (i.e. there exists no 𝕨 such that
(𝕩,𝕨) ∈ R). In this work, we make use of the stronger version of extractable witness encryption, that can be
secure even if 𝕩 ∈ R (but the adversary doesn’t know the witness). Throughout the paper, we, nevertheless,
sometimes abuse the terminology and call it ‘WE’, omitting the ‘extractable’.

2.5 Garbling Schemes

Here we recall the definition of garbling schemes for binary circuits introduced by Yao in 1982 [Yao82] and

further formalized in [LP09, BHR12b].

Definition 3. A garbling scheme for a family of binary circuits Cfam is a tuple of PPT algorithms GC =
(Garble,Encode,Eval) such that:

• Garble(C)→ (ctGC, ek): Takes as input a circuit C : {0, 1}n → {0, 1}k ∈ Cfam and outputs a garbled
circuit description ctGC and an encoding key ek.

• Encode(ek, x) → Lx: Takes as input an encoding key ek and a circuit input x ∈ {0, 1}n and outputs
the encoded input Lx. We also refer to Lx as the ‘input labels’ (or sometimes just ‘labels’).

• Eval(ctGC, Lx): On input the garbled circuit ctGC and the labels of the input Lx, outputs the circuit
output y ∈ {0, 1}k

Furthermore, it should satisfy the following properties.

Correctness. We require that for any binary circuit C ∈ Cfam and any input x ∈ {0, 1}|inp(C)|,

Pr

[
C(x) = Eval(ctGC, Lx) :

(ctGC, ek)← Garble(1λ, C)
Lx ← Encode(ek, x)

]
= 1

14

Adaptive Privacy. We require that there exists a PPT simulator Sim = (Sim1, Sim2) such that for any
PPT adversary A:

∣∣∣∣∣∣Pr
 A(ctGC, Lx) = 1 :

(ctGC, ek)← Garble(C)
x← A(ctGC)

Lx ← Encode(ek, x)


− Pr

 A(ctGC, Lx) = 1 :
(ctGC, st)← Sim1(|C|)

x← A(ctGC)
Lx ← Sim2(st, x, C(x))

∣∣∣∣∣∣ ⩽ negl(λ)

The garbling scheme is called privacy-free if it satisfies only correctness.

In Yao’s garbling scheme the encoding key is {Lb
x,i}ni=1,b=0,1 and the labels ofx areLx = (Lx1

x,1, . . . , L
xn
x,n).

Notice that fortuitously the algorithm coincide with a Lamport signature [Lam79] on x. Yao GC can be

simply proven adaptively secure in the random oracle model [BHR12a]. We will make use of the well-

established free-XOR [KS08] and half-gate [ZRE15] optimizations.

2.6 The Bitcoin Ledger

Ledger Model. We model Bitcoin as a distributed ledger functionality FBTC maintaining an append-

only sequence of confirmed transactions (a ledger). We assume a global clock which counts time in rounds

r ∈ ℕ and r ⩽ poly(λ). Any party can submit a transaction tx to the ledger at any round r by calling

FBTC.WRITE(tx). For a party P and round r ∈ ℕ, the notation LrP denotes party P ’s local view of the

Bitcoin ledger at round r.
The height of a ledgerL is denoted h(L). A ledger of height h is a sequence of blocksL[0], . . . ,L[h−1].

and L[: h] denotes the sequence of all blocks in L less than height h. L||B denotes the ledger formed by

appending the block B to the ledger L. Each block L[i] is a sequence of transactions. By flattening the

blocks, the ledger itself can be viewed as a sequence of transactions. We denote by L1 ⪯ L2 that L1 is a
prefix of L2.

We assume the Bitcoin ledger satisfies the two fundamental properties safety and liveness. Infor-

mally, safety ensures that the ledgers of honest parties are consistent with each other, and liveness ensures

that new valid transactions are eventually included in the ledgers of honest parties. Safety is defined as

in [GKL15].

Definition 4 (Ledger Safety). A ledger functionality FBTC is safe if with probability 1−negl(λ): (i) for any
honest party P and rounds r1 ≤ r2, Lr1P ⪯ L

r2
P (self-consistency); and (ii) for any honest parties P1, P2 and

any round r, LrP1
⪯ LrP2

or LrP2
⪯ LrP1

(view-consistency)

To precisely define liveness, we first define the validity of a Bitcoin transaction, beginning with amodel

for Bitcoin transactions. We discuss only the features of Bitcoin transactions that are relevant to BABE.

UTXO Model and Taproot Scripts. The ledger’s state is represented as a set of unspent transaction

outputs (UTXOs). Each UTXO is a pair out = (a, lockScript) where a ∈ ℝ⩾0 is the amount of coins (in

BTC) in that UTXO, and lockScript is a program (the locking script) that determines under which conditions

the UTXO can be spent.

In BABE, we widely use Taproot Trees [WNT20], or Taptrees, which make a UTXO spendable by

satisfying one among multiple locking scripts. We will represent the locking script of such a UTXO as

lockScript = ⟨leaf0, . . . , leafk−1⟩.

15

Transactions. A transaction is a triple tx = (inputs, tx_witnesses, outputs) where:

• inputs = [in1, . . . , inn], where each input references an output of a previous transaction, indexed as

in = (PrevTx,outIndex, leaf) where PrevTx is the previous transaction, outIndex is the index of the
output in the previous transaction, and leaf is the leaf of the Taproot tree to be satisfied.

• outputs = [out1, . . . , outm] where each output is a pair (a, lockScript) as above;

• tx_witnesses = [w1, . . . , wn], where wi is a transaction witness (e.g., signature, data, etc.) intended

to satisfy the corresponding input’s leaf script.

The pair tx = (inputs, outputs) is called the transaction skeleton.

Cryptographic Primitives. We assume the existence of the following cryptographic primitives that are

used by the ledger functionality:

• Signature Scheme: SigBTC with algorithms SigBTC .Gen(1
λ) → (sk, pk), SigBTC .Sign(sk, tx) → σ,

and SigBTC .Verify(pk, tx, σ)→ 0/1 which is EUF-CMA secure.

• Hash Function: HashBTC(m)→ h modeled as a random oracle.

• Lamport One-Time Signature Scheme [Lam79]: LampSig with algorithms LampSig.Gen(1λ, ℓ) →
(lsk, lpk), LampSig.Sign(lsk,m)→ µ, and LampSig.Verify(lpk,m, µ)→ 0/1 where ℓ is the num-

ber of bits in the message m. A Lamport signature scheme constructed using HashBTC can be

efficiently verified in Bitcoin script.

lsk :=

(
L0
0 . . . L0

ℓ−1

L1
0 . . . L1

ℓ−1

)
←$

(
{0, 1}λ

)2×ℓ
(11)

lpk :=

(
HashBTC(L

0
0) . . . HashBTC(L

0
ℓ−1)

HashBTC(L
1
0) . . . HashBTC(L

1
ℓ−1)

)
(12)

µ :=
(
Lm0
0 . . . L

mℓ−1

ℓ−1

)
(13)

LampSig.Verify(lpk,m, µ) = 1 ⇐⇒ ∀i ∈ {0, . . . , ℓ− 1},HashBTC(µi) = lpkmi
i (14)

Locking Scripts. The locking scripts of Bitcoin that are used by BABE are described below:

• Signature Check: CheckSig(pk)—Requiresw to contain a digital signatureσ such thatSigBTC .Verify(pk, tx, σ) =
1.

• Relative Timelock: RelTimelock(τ) — Requires that at least τ blocks have elapsed since the out-

put referenced by the input was created. That is, if a transaction with an input of the form in =
(PrevTx, outIndex, ⟨RelTimelock(τ)⟩) is included in a block at height h, then PrevTx must have

been included in a block at height at most h− τ .

• Hash Lock: HashLock(h) — Requires that the transaction witness contains a hash pre-image of h,
i.e. w such that HashBTC(w) = h.

• Logical Operations: The above scripts can be combined using logical operator ∧ (AND) and ∨ (OR)

to form more complex locking conditions.

Using the above scripts and logical operator ∧ (AND) and ∨ (OR), we can define more complex locking

scripts, for example:

16

• Lamport Signature: CheckLampSig(lpk)— Requires that the transaction witness contains a Lamport

signature for the public key lpk on some message. In BABE, we will use this script to ensure that the

Prover, while posting this transaction, makes a binding commitment to some proof.

CheckLampSig(lpk) :=

ℓ∧
i=1

(
HashLock(lpk0i) ∨ HashLock(lpk1i)

)
(15)

• Check Lamport Signatures fromMultiple Parties on SameMessage: CheckLampSigsMatch(lpkA, lpkB)
—Requires that the transaction witness contains a Lamport signature for each public key lpkA, lpkB ,
both on the samemessage. In BABE, wewill use this script to ensure that the Verifier (who holds only

lskB) commits to the same proof that the Prover (who holds lskA) committed to. This is guaranteed

because the Verifier, who does not know lskA, cannot create a valid Lamport signature under lskA for

any message other than the one committed to by the Prover. The Prover can then use the Verifier’s

commitment to evaluate the garbled circuit.

CheckLampSigsMatch(lpkA, lpkB,msg) :=

ℓ∧
i=1

[(
HashLock((lpkA)

0
i) ∧ HashLock((lpkB)

0
i)
)

∨
(
HashLock((lpkA)

1
i) ∧ HashLock((lpkB)

1
i)
)]

(16)

Definition 5 (Transaction Validity). A transaction tx = (inputs, tx_witnesses, outputs) is validwith respect
to a ledger L, denoted ValidL(tx), if:

1. All Inputs Unspent: For each ini = (PrevTx, outIndex, leaf) in inputs, the transaction PrevTx exists
in L.

2. All Locking Scripts Satisfied: Each input’s specified leaf script is one of the leafs of the taptree for that
input. That is, for each ini = (PrevTx, outIndex, leaf), leaf ∈ ⟨leaf0, . . . , leafk−1⟩ =
PrevTx.outputs[outIndex].lockScript. Moreover, the transaction witness tx_witnesses[i] must satisfy
the script leaf .

3. Value Preservation: The total amount of coins in the outputs is less than or equal to the total amount
of coins in the inputs.

m∑
j=1

outputs[j].a ≤
n∑

i=1

ini.PrevTx.outputs[ini.outIndex].a (17)

A ledger L is valid, denoted Valid(L), if for all transactions tx in L, ValidL[:tx](tx) = 1 (L[: tx] is the ledger
containing all transactions in LrP before tx).

Definition 6 (Ledger Validity). If a transaction tx appears in the ledger view LrP of any party P at any
round r, then tx is valid with respect to the state LrP [: tx] (the ledger containing all transactions in LrP before
tx).

Finally, to define liveness, we note that only valid transactions may be included in the ledger. How-

ever, the adversary may delay the inclusion of a valid transaction. The adversary may also include his own

transactions in the ledger which may cause the honest party’s transaction to become invalid thereafter,

e.g. the adversary’s transaction may use the same input as the honest party’s transaction. Thus, liveness is

guaranteed when the adversary is (computationally) unable to exclude a transaction for too many blocks.

17

To make this precise, we extend the definition of unambiguous transactions [GKL15] to unstoppable trans-
actions. Informally, a transaction is unstoppable if no matter where in the next u blocks the adversary

includes the honest party’s transaction, this transaction will remain valid. For example, a transaction that

requires the honest party’s signature will be unstoppable since the adversary cannot forge the honest

party’s signature. In general, the adversary may have access to some state st, which may include certain

signatures, ciphertexts, etc. shared by the honest party.

Definition 7 (u-Unstoppable Transactions). A transaction tx is u-unstoppable with respect to a ledger L
and adversarial state st, if for all PPTadversaries A:

Pr

[
Valid(L||B1|| . . . ||Bu) = 1 :

B1, . . . , Bu ← A(L, st)
∃ i ∈ {1, . . . , u} : tx ∈ Bi

]
⩾ 1− negl(λ) (18)

Definition 8 (Ledger Liveness). A ledger functionality FBTC is u-live (u ∈ ℕ) if for all adversarial states
st, with probability 1 − negl(λ), for any party P calling FBTC.WRITE(tx) at any round r such that tx is
u-unstoppable with respect to LrP and st, for all honest parties H and rounds r′ with h(Lr′H) ⩾ h(LrP) + u,
tx ∈ Lr′H [: h(LrP) + u].

While the above definition of liveness guarantees inclusion of a transaction within a certain number

of blocks, we use the chain growth property [GKL15] to guarantee that the height of every party’s ledger

grows.

Theorem 3 (τ -Chain Growth). For all s > λ, for all honest parties P , Pr
[
∀ r : h(Lr+s

P) < h(LrP) + τs
]
⩽

negl(λ).

3 The BitVM-core Primitive

We define the BitVM-core primitive (c.f. BitVM2-core [LAA
+
25]).

7
A BitVM-core protocol is an inter-

active protocol run between a Prover P and a Verifier V interacting with the Bitcoin ledger functionality

FBTC. The protocol consists of two phases: a setup phase and a proving phase. In the setup phase, the

Prover and Verifier interact off-chain to agree on the statement 𝕩 to be proven and a set of Bitcoin trans-

actions T . A subset of these transactions S are the withdraw transactions because they pay Bitcoin to the

Prover and can be posted by the Prover on Bitcoin if and only if he has a valid witness for the statement.

During setup, the Prover and Verifier obtain and store local state (e.g., ciphertexts, private keys) to be

used in the proving phase. To defend against malicious behavior, both the Prover and Verifier validate

information received from the other party and may abort the setup if they detect invalid information.

During the proving phase, both the Prover and Verifier interact with the Bitcoin ledger. The Prover,

who now knows a witness for the statement to be proven, and the Verifier take turns posting transactions

from T to the ledger. In the end, the Prover wins by posting a withdraw transaction from S or the Verifier

wins by preventing the Prover from ever posting a withdraw transaction. Security means that the Prover

must win if he has a valid witness (even if the Verifier is malicious) and the Verifier must win otherwise

(even if the Prover is malicious).

Protocol Syntax. A BitVM-core protocol for a relationR consists of one PPT algorithm Gen and four

PPT interactive algorithms:

• Gen(R)→ crs: Takes as input the relation and outputs a common reference string crs.

7

Compared to BitVM2-core [LAA
+
25], we simplify the definition by considering a single Verifier and excluding the optimistic

path. We discuss these extensions in Sec. 8.

18

• PSetup(crs): Run by the Prover during the setup phase, interacts with the Verifier and the ledger

functionality FBTC, and outputs a statement 𝕩, a set of transactions T , a subset S ⊆ T , and the

Prover’s state stP . Alternatively, the Prover may output ⊥ to indicate that the setup failed.

• VSetup(crs): Run by the Verifier during the setup phase, interacts with the Prover and the ledger

functionality FBTC, and outputs a statement 𝕩, a set of transactions T , a subset S ⊆ T , and the

Verifier’s state stV . Alternatively, the Verifier may output ⊥ to indicate that the setup failed.

• PProve(crs,𝕩, T ,S, stP ,𝕨): Run by the Prover knowing a witness𝕨, interacts with the ledger func-

tionality FBTC, and outputs a bit indicating successful proving.

• VProve(crs,𝕩, T ,S, stV): Run by the Verifier during the proving phase, interacts with the ledger

functionality FBTC, and outputs a bit indicating the Verifier completed their part of the protocol.

We denote by ⟨PSetup(crs), VSetup(crs)⟩r the random variable representing the transcript of the setup

phase run interactively by the Prover and Verifier starting at round r (r is omitted when not relevant). The

outputs of the Prover and Verifier during setup are denoted respectively by

outP (⟨PSetup(crs), VSetup(crs)⟩) = (𝕩, T ,S, stP) or ⊥ (19)

outV (⟨PSetup(crs), VSetup(crs)⟩) = (𝕩, T ,S, stV) or ⊥. (20)

and the union of both outputs is denoted by

out⟨PSetup(crs), VSetup(crs)⟩ = (𝕩, T ,S, stP , stV) (21)

if neither party aborted, and⊥ otherwise. Similarly, the outputs of each party during the proving phase are

denoted respectively by outP (⟨PProve(·), VProve(·)⟩) and outV (⟨PProve(·), VProve(·)⟩)where (·) is replaced
by the inputs of the corresponding algorithm.

Robustness ensures that as long as the Prover is honest, accepts that the setup was performed correctly,

and has a valid witness, a malicious Verifier cannot prevent the Prover from succeeding (i.e., the required

withdraw transaction appears on the ledger) except with negligible probability. Thus, the worst thing a

malicious Verifier can do is to cause the Prover to abort the setup, in which case no Bitcoin is ever lost by

any party.

Definition 9 (u-Robustness). For all NP relationsR, all PPT adversarial Verifiers V ∗, all rounds r ∈ ℕ, the
following holds:

Pr

tx ∈ Lr+u
P :

crs← Gen(R)
outP (⟨PSetup(crs), V

∗(crs)⟩) = (𝕩, T ,S, stP)
outP (⟨PProve(crs,𝕩, T ,S, stP ,𝕨), V ∗(crs)⟩r) = 1
(𝕩,𝕨) ∈ R
tx ∈ S

 ⩾ 1− 2−κ − negl(λ) (22)

Knowledge soundness ensures that if the Verifier accepts the setup, then a malicious Prover cannot

successfully include the withdraw transaction on Bitcoin unless he knows a valid witness for the cho-

sen relation. As usual in knowledge soundness, the Prover’s knowledge of the witness is defined by the

existence of an extractor that can extract the witness from the Prover.

Definition 10 (Knowledge Soundness). For all NP relationsR, all PPT adversarial Provers P ∗, there exists
a PPT extractor E such that for every benignauxiliary input aux ∈ {0, 1}poly(λ):

Pr

(𝕩,𝕨) ∈ R :

crs← Gen(R)
outV (⟨P ∗(crs, aux), VSetup(crs)⟩) = (𝕩, T ,S, stV)
outV (⟨P ∗(crs, aux), VProve(crs,𝕩, T ,S, stV)⟩) = 1
∃ r ∈ ℕ, ∃ tx ∈ S, ∃ honestH : tx ∈ LrH
𝕨← E(crs, aux)

 ⩾ 1− 2−κ − negl(λ) (23)

19

where E above has the exact same view as the adversary.

Remark 3. Assuming the existence of strong cryptographic primitives, there are auxiliary information dis-
tributions for which not all SNARKs admit an extractor [BCPR14, BP15]. Following the SNARK literature, we
therefore, formally assume that the adversary should have access only to “benign” auxiliary inputs. Notably,
these results are highly theoretical and do not affect SNARKs’ security in practice.

Together, robustness and knowledge soundness make a BitVM-core protocol trustless, solving the

problem stated in Sec. 1. It is trustless because once the Prover and Verifier have mutually accepted that

setup was performed correctly, an honest Prover withdraw Bitcoin even if the Verifier is malicious, and an

honest Verifier can prevent any malicious Prover from withdrawing Bitcoin.

Since a trivial protocol where the setup always aborts satisfies the above two properties, we also require

that if both parties are honest, then neither party aborts during setup.

Definition 11 (Setup Correctness). For all NP relationsR,

Pr

[
out⟨PSetup(crs), VSetup(crs)⟩ = ⊥ :
crs← Gen(R)

]
⩽ negl(λ)

4 Witness Encryption for Linear Pairing Relation

In this section we present a core building block of our protocol, namely a Witness Encryption (WE) for

Groth16, under the intermediate assumption that one proof element, π1, is known to the Encryptor. Look-

ing ahead, even though this is an unnatural assumption, combined with a garbling scheme it will constitute

the cryptographic core of our full BABE construction.

Our crucial observation is that we can construct a simple and efficient Witness Encryption Scheme

with respect to a Groth16 verification for an (R1CS) relationR, a statement x and a specific proof element

π1.
Let any R1CS relationR and a Groth16 proof system forR. We define the following relation:

R′ =
{(

(crs,x, π1);w
)
: (π1, π2, π3) = Groth16.Prove(crs,x,w) ∧ (x,w) ∈ R

}
(24)

Recall that we do not consider zero-knowledge so the (π1, π2, π3) = Groth16.Prove(crs,x,w) equality
is well-defined, since Prove is deterministic (see Remark 1).

Construction 1 (WE for Groth16 with known π1). Let R be an R1CS relation. Below is WE = (Gen, Enc,
Dec), our witness encryption scheme forR′:
Gen(R′): Output crs = Groth16.Gen(R)
Enc(crs,x, π1): Samples r ←$ 𝔽∗q and executes the two sub-algorithms:

• Encsetup(crs,x,msg; r): SetY := e
(
[α]1, [β]2

)
+e
(
X, [γ]2

)
andX :=

∑ℓ
i=1 xi

[
βai(τ)+αbi(τ)+ci(τ)

γ

]
1

and output ctsetup = (r[δ]2,RO(rY) +msg)

• Encprove(crs, π1; r) : Output ctprove = rπ1

• Outputs (ctsetup, ctprove)

Dec(ct1, ct2, (π2, π3)): Parse ct := (ctsetup, ctprove) := (ct1, ct2, ct3) and computemsg = ct3−RO(e(ct1, π2)+
e(π3, ct2))

20

Security of WE. In the following we show that this is effectively a witness encryption scheme for the

relation R, in the sense that the Decryptor cannot learn any information about msg unless she knows a

valid witnessw for the R1CS relationR. In more detail, we show thatWE is a secure witness encryption

forR′
, therefore from a cheating adversary we can extract a valid witness w for the original relationR.

We prove security in the generic bilinear group model (see Sec. 2.2.1) and random oracle model. That

means that the extractor has access to the adversary’s queries to both oracles. The random oracle ensures

that the extractor gets access to the group element that “randomizes” the message (here rY). Otherwise,

from the point of view of the adversary the ciphertext perfectly hides the messagemsg. So, intuitively, the
only way for the adversary to learn anything from the ciphertext is to query rY and learn the masking

term. But then the extractor gets access to rY as well.

From there we use a standard generic group model argument to extract valid proof element π2, π3.
Finally, we use the extractor of Groth16 to extract the original witness w.

Remark 4. As discussed in Sec. 1.3.2, our construction falls in the framework of witness encryption for general
linear pairing relations introduced in [BC16, GKPW24] and subsequently formalized in [GHK+25]. Despite
that, the security of our scheme cannot be directly inferred from these prior works: [BC16] insists on relations
in the standard model (does not capture Groth16), [GKPW24] identifies the general paradigm for arbitrary
relations in the GGM, but provides security proof only for their particular instantiation and [GHK+25] for-
malizes the idea under a slightly different abstraction (linearly verifiable SNARKs). Consequently, we provide
a complete security proof of our WE scheme for our specific relation.

Lemma 1. WE is a secure witness encryption scheme forR′ in the generic bilinear group and random oracle
models.

Proof. Let a PPT adversary A of the WE security game: crs← WE.Gen(R′), chooses (x,msg0,msg1)←
A(crs), b←$ {0, 1}, ctb ← WE.Enc(crs,x,msgb), that outputs b

′ ← A(ctb) such that Pr[b = b′] = 1
2 + ϵ

for an arbitrary ϵ.
We will construct an extractor E that on input crs and x outputs a valid witnessw, i.e. w ← E(crs,x),

such that R(x,w) = 1. Since we are in the generic group and random oracle models, E additionally has

access to all the corresponding generic group and random oracle queries of A.
First, we show that A queried the random oracle on rY with probability at least ϵ. Indeed

1

2
+ ϵ = Pr[b = b′] =Pr[b = b′|“rY Queried”] Pr[“rY Queried”]

+Pr[b = b′|“rY not Queried”] Pr[“rY not Queried”]

however if rY was not queried by A then RO(rY) information theoretically hides msgb from A, since
RO(rY) is uniformly random. Consequently Pr[b = b′|“rY not Queried”] = 1

2 which means that

1

2
+ ϵ =Pr[b = b′|“rY Queried”] Pr[“rY Queried”] +

1

2
Pr[“rY not Queried”]

⩽Pr[“rY Queried”] +
1

2
⇒Pr[“rY Queried”] ≥ ϵ

Now in the case where rY was queried by A we argue that, unless with negligible probability, E by

observing the generic group oracle queries of A can extract a valid Groth16 proof π = (π1, π2, π3), i.e.
Groth16.Verify(crs,x, π) = 1. We start from the symbolic group representation (see Sec. 2.2.1). Let R
be the symbolic variable of r, the information-theoretically RY can only be obtained from ct1 and ct2
queries, because no other element that the adversary receives contains the variable R. Therefore:

RY = a2Rπ1 + a3R∆⇒ Y = a2π1 + a3∆

21

for a2, a3 chosen by the adversary.

Switching to the actual generic group model:

Y = e(π1, [a2]2) + e([a3]1, [δ]2)

unless with probability negl
GGM

(λ) ⩽ (7+n+m)(m−ℓ)
2p = negl(λ) (this stems mostly from the Groth16 CRS

and nm is the size of the R1CS matrices) determined by the Master Theorem (see Thm. 1). Recall that

Y := e
(
[α]1, [β]2

)
+ e
(ℓ∑
i=1

xi

[
βai(τ) + αbi(τ) + ci(τ)

γ

]
1

, [γ]2
)

so π2 = [a2]2, π3 = [a3]1 are valid Groth16 proof elements that E can compute by simply observing A’s
generic group oracle queries.

Finally, E invokes the knowledge soundness extractor of Groth16 onπ = (π1, π2, π3) := (π1, [a2]2, [a3]1)
and extracts a valid witness w, unless with a negligible probability negl

Groth16-KS
(λ).

In summary, the overall probability of success of E is ϵ−negl
GGM

(λ)−negl
Groth16-KS

(λ) = ϵ−negl(λ).

5 Garbled Circuit for BN254 Scalar Multiplication

5.1 Overview

Goal. The objective of this section is to construct a compact garbled circuit for BN254 scalar multipli-

cation with a hard-coded secret scalar. Concretely, the garbling algorithm fixes a secret r ∈ 𝔽∗q , and the

Prover provides a public input point π ∈ 𝔾 (authenticated on-chain via a Lamport signature). The garbled

evaluation outputs the group element fr(π) = rπ.

Input representation. The public input point π = (x(π), y(π)) ∈ 𝔽2p is supplied to the garbled circuit

through labels corresponding to the bit-decomposition of its affine coordinates. The bit-decomposition is

important because it enables verification of the labels on Bitcoin (see Eqs. (15) and (16)). From π, the circuit
derives a small collection of algebraic features

u(π) =
(
1, x(π), y(π), x(π)2, y(π)2, x(π)y(π)

)
∈ 𝔽6p,

and we also work with its bit-decomposition u(π) ∈ {0, 1}ℓ where ℓ = 1 + 5n and n = ⌈log2 p⌉. The
linear mapG ∈ 𝔽6×ℓ

p reconstructs u(π) from u(π), i.e., uT (π) = G× uT (π). Details in Sec. 5.2.

Observation: group addition becomes an inner product. A central bottleneck for naively garbling

rπ is that scalar multiplication entails many elliptic-curve additions/doublings, which are prohibitively

expensive inside a Boolean garbled circuit. Our first observation, as made by [EL26] is that, for BN254,

addition of an input point π ∈ 𝔾 to a fixed point ϕ ∈ 𝔾 (both in affine coordinates) can be expressed

as linear functions of the feature vector u(·). More precisely, assuming x(ϕ) ̸= x(π), Lem. 3 shows that

Jacobian coordinates of π + ϕ can be written as

(X,Y, Z) = A(ϕ)× u(π)T ,

for a matrixA(ϕ) ∈ 𝔽3×6
p that depends only on ϕ. Since the Prover sees π only in bit form, we immediately

lift this to the bit-decomposed domain usingG, yielding an equivalent form

(X,Y, Z) = B(ϕ)× u(π)T where B(ϕ) = A(ϕ)×G ∈ 𝔽3×ℓ
p .

22

Finally, because we will often add to ϕ either π or O depending on a bit δ, we use the bit-gated variant

(Lem. 4), which yields a matrix formD(δ, ϕ)×u(π)T for ϕ+ δπ whose the coefficient matrixD depends

only on (δ, ϕ).

Decomposable Randomized Encodings (DREs) To garble the resulting linear function D(δ, ϕ) ×
u(π)T , we use a decomposable randomized encoding (DRE) for linear functions [Ish13]. A DRE for a

function f : X1 × . . .×Xn → Y is a randomized encoding

f̂(x = (x1, . . . , xℓ), ρ) = (f̂1(x1, ρ), . . . , f̂ℓ(xℓ, ρ))

with randomness ρ such that there exists a decoder Dec(f̂(x, ρ)) = f(x) but f̂(x, ρ) does not reveal any
additional information about x (Defs. 12 and 13). Unlike garbled circuits, decoding a linear DRE requires

no ciphertexts.

High-level plan. At a high level, we linearize the field operations (using the feature vector u), use the
DRE decoding to compute all linear field- and group-level operations (which are expensive in a boolean

circuit), and use the boolean garbled circuit for only low-degree non-linear operations:

1. Step 1: Create a DRE for weighted group sum to compute the scalar multiplication rπ.

2. Step 2: Create another DRE to compute the DRE used in Step 1.

3. Step 3: Create a boolean garbled circuit for (i) validating the input is a valid Elliptic curve point, (ii)

deriving the feature vector u, and (iii) computing the DRE used in Step 2.

Step 1: DRE for theweighted group sumwith publicweights. To efficiently do scalarmultiplication,

we take r =
∑n−1

i=0 ri2
i
, the binary expansion of the hard-coded scalar r ∈ 𝔽∗q . Using the DRE for weighted

summation in abelian groups (Lem. 8), we obtain a DRE for the function

f(r0π, . . . , rn−1π) =
n−1∑
i=0

2i(riπ) = rπ.

The DRE for this function is

f̂(r0π, . . . , rn−1π) = (r0π + ρ0, . . . , rn−1π + ρn−1)

where ρ0, . . . , ρn−1 are sampled uniformly subject to

∑n−1
i=0 2iρi = 0.8 This DRE shifts this weighted

summation (here 20, . . . , 2n−1
are the weights) from the circuit to the Prover: the Prover simply computes

the weighted sum of the elements of f̂ to obtain rπ1.

Step 2: DRE for producing each riπ + ρi from u(π). This step creates a DRE to compute riπ + ρi
for random masks ρi used in Step 1. Here we use Lem. 4 to express riπ + ρi in Jacobian coordinates as a

linear map of u(π):
(Xi, Yi, Zi) = D(ri, ρi)× u(π)T ,

for a matrixD(ri, ρi) ∈ 𝔽3×ℓ
p depending only on the private inputs (ri, ρi). Each of the three coordinates

is thus an inner product between a known coefficient vector and the bit-vector u(π). We then apply a DRE

for private affine functions (Lem. 9) to create a DRE for these inner products. The DRE takes the form

ĥk(r, uk, ω) = {uk ·Di,j,k + si,j,k}i∈[n],j∈{1,2,3} for k ∈ [ℓ]

8

Note that in the actual construction, we also need to randomize the representation on Jacobian coordinates. We refer the

reader to Remark 5 and Lem. 5 for more details.

23

whereDi,j,k is the (j, k)-th entry ofD(ri, ρi) as defined above, and ω represents all the randomness used

in the DRE, including ρi from Step 1 and si,j,k which are uniformly random subject to

∑ℓ
k=1 si,j,k = 0 for

all i ∈ [n], j ∈ {1, 2, 3}. The complete DRE construction is given in Thm. 4.

Step 3: The Boolean Circuit. The garbled is formally defined in Constr. 2.

Garbling: Outputs a Lamport secret key (the encoding key)

ek =

(
L0
x,0 . . . L0

x,n−1 L0
y,0 . . . L0

y,n−1

L1
x,0 . . . L1

x,n−1 L1
y,0 . . . L1

y,n−1

)
and the garbled circuit ctGC computed in three steps:

1. Elliptic curve validation: The garbled circuit first verifies that the input point π = (x(π), y(π))
lies on the curve E, i.e., it checks that y(π)2 ≡ x(π)3 + 3 (mod p).

2. Binary decomposition: If the validation passes, the circuit computes the binary decomposition

u(π) ∈ {0, 1}1+5n
of u(π) = (1, x(π), y(π), x(π)2, y(π)2, x(π)y(π)). These two steps are imple-

mented using a privacy-free Boolean garbled circuit. Let L
uk(π)
u,k for k ∈ [ℓ] be the output labels of

this step.

3. DRE encoding: For each k ∈ {1, . . . , ℓ} where ℓ = 1 + 5n, the garbled circuit comes hardwired

with the DRE encoding from Thm. 4. Specifically, the garbled circuit contains an encryption of

ĥk((r, 0), ω) under the 0-label L0
u,k and an encryption of ĥk((r, 1), ω) under the 1-label L1

u,k for

uk(π).

Evaluation: The evaluator, given the input labels

L =
(
L
x(π)0
x,0 . . . L

x(π)n−1

x,n−1 L
y(π)0
y,0 . . . L

y(π)n−1

y,n−1

)
,

evaluates the Boolean circuits to obtain labels for u(π), and decrypts the appropriate encryptions to obtain
ĥk(r, uk(π)) for each k. The evaluator then decodes the DRE as follows (Thm. 4):

• Recast hk(r, uk(π), ω) as {ti,j,k}i∈[n],j∈{1,2,3}. Then the Prover aggregates shares to cancel the si,j,k-
terms: t̂i,j =

∑ℓ
k=1 ti,j,k.

• Interpreting (t̂i,1, t̂i,2, t̂i,3) as the Jacobian coordinates of a masked point Qi, the final output is

obtained by the usual bit-weighted recombination out =
∑

i 2
iQi. Since Qi = riπ + ρi and∑

i 2
iρi = 0, then out = rπ.

Intuitively, the heavy work (group operations and most algebra) is pushed to the Prover and to the Ver-

ifier’s offline preprocessing, while the online garbled circuit mainly performs validation, low-level arith-

metic for feature extraction, and symmetric-key decryptions for table selection to output the precomputed

DRE components.

5.2 Elliptic Curve Addition and Notation

Let E/𝔽p be the BN254 curve in short Weierstrass form

E : y2 = x3 + 3 (mod p),

where p is the BN254 base-field prime. Let π be a point on the curve, represented in affine coordinates π :=
(x(π), y(π)) with x(π), y(π) ∈ 𝔽p. Then we define u(π) = (1, x(π), y(π), x(π)2, y(π)2, x(π)y(π)) and

24

u(π) ∈ {0, 1}1+5n
be the binary decomposition of u(π). More precisely, if u(π) = (u0, u1, u2, u3, u4, u5)

where u0 = 1, u1 = x(π), u2 = y(π), u3 = x(π)2, u4 = y(π)2, and u5 = x(π)y(π), then:

u(π) = (1, u1,0, . . . , u1,n−1, u2,0, . . . , u2,n−1, u3,0, . . . , u3,n−1, u4,0, . . . , u4,n−1, u5,0, . . . , u5,n−1)

where (ui,0, . . . , ui,n−1) is the binary decomposition of ui for i ∈ {1, 2, 3, 4, 5} (i.e., ui =
∑n−1

j=0 ui,j2
j
).

We use the notation ui(π) and ui(π) to denote the ith component of u(π) and u(π), respectively.

Further, we defineG ∈ 𝔽6×(1+5n)
p such thatG× uT (π) = uT (π). The matrixG is structured as:

G =



1 0 0 0 0 0

0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


where 0 denotes a row vector of n zeros, and 2 denotes the row vector (20, 21, . . . , 2n−1) of powers of
2. That is, the first column of G is (1, 0, 0, 0, 0, 0)T (corresponding to the constant term u0 = 1), and for

each i ∈ {1, 2, 3, 4, 5}, columns (i− 1)n+2 through in+1 contain the powers of 2 (20, 21, . . . , 2n−1) in
row i+ 1, with zeros elsewhere. This ensures that G× uT (π) reconstructs the field elements from their

binary decomposition.

The following lemmata Lem. 2, Lem. 3, Lem. 4, Lem. 5 formally define the elliptic curve addition and,

further, ϕ+ δπ operation in Jacobian coordinates.

Lemma 2. Let π = (x(π), y(π)) ∈ E(𝔽p) \ {O} be given in affine coordinates, and let δ ∈ {0, 1}. Define
M(δ) ∈ 𝔽3×6

p by

M(δ) =

1− δ δ 0 0 0 0
1− δ 0 δ 0 0 0
δ 0 0 0 0 0

 .

Then M(δ) × uT (π) is a Jacobian representation of the point δπ: when δ = 1 it equals (x(π), y(π), 1),
and when δ = 0 it equals (1, 1, 0), which represents O under the convention that any (X,Y, 0) with Y ̸= 0
encodes the point at infinity. Alternatively,N(δ)× uT (π) is also equal to δπ, whereN(δ) = M(δ)×G.

The proof of this lemma is straightforward and is left to the reader.

Lemma 3. Let ϕ, π ∈ E(𝔽p) \ {O} be two points in affine coordinates such that x(ϕ) ̸= x(π). Then a
Jacobian representation of ϕ + π is given by A(ϕ) × uT (π) where A(ϕ) ∈ 𝔽3×6

p is a matrix that depends
only on ϕ, defined by:

A(ϕ) =

 6 x2(ϕ) −2y(ϕ) x(ϕ) 0 0
9y(ϕ) 0 −(y(ϕ)2 + 9) 3x(ϕ)y(ϕ) y(ϕ) −3x2(ϕ)
−x(ϕ) 1 0 0 0 0


Equivalently, Jacobian coordinates of ϕ + π are also given by B(ϕ) × uT (π) where B(ϕ) ∈ 𝔽3×(1+5n)

p is
defined asB(ϕ) = A(ϕ)×G.

Proof. Let ϕ = (x1, y1) and π = (x2, y2) be affine points on

E/𝔽p : y2 = x3 + 3,

25

and assume x1 ̸= x2. Define

Z
def

= x2 − x1 ∈ 𝔽∗p.
Consider the following projective (Jacobian-style) representation of ϕ+ π:

X3
def

= (y2 − y1)
2 − (x1 + x2)Z

2,

Y3
def

= (y2 − y1) (x1Z
2 −X3)− y1Z

3,

Z3
def

= Z.

(25)

When Z ̸= 0, the triple (X3 : Y3 : Z3) represents the affine point(
X3

Z2
3

,
Y3
Z3
3

)
and one checks that it equals ϕ + π (this is the standard affine-addition formula written in projective

coordinates; see, e.g., the explicit projective addition formulas for short Weierstrass curves).

We now expand (25) and simplify using the curve equations

y21 = x31 + 3, y22 = x32 + 3.

Derivation of Z3. By definition, Z3 = Z = x2 − x1, which is already linear in u(π).

Derivation of X3. First expand:

X3 = (y2 − y1)
2 − (x1 + x2)(x2 − x1)

2

= (y22 − 2y1y2 + y21)− (x1 + x2)(x
2
2 − 2x1x2 + x21)

= y22 − 2y1y2 + y21 −
(
x31 − x21x2 − x1x

2
2 + x32

)
.

Substitute y21 = x31 + 3 and y22 = x32 + 3 to obtain cancellation of the x31 and x32 terms:

X3 = (x32 + 3)− 2y1y2 + (x31 + 3)− x31 + x21x2 + x1x
2
2 − x32,

hence

X3 = 6 + x21x2 − 2y1y2 + x1x
2
2. (26)

Derivation of Y3. Start from (25):

Y3 = (y2 − y1) (x1Z
2 −X3)− y1Z

3.

Using Z = x2 − x1, expand and simplify to:

Y3 = y1x
3
2 − 3x21x2y2 + 3x1x

2
2y1 − y21y2 + y1y

2
2 + 3(y1 − y2).

(One can obtain this by a straightforward polynomial expansion and collecting terms.) Now use the curve

relations to eliminate the cubic term: since y22 = x32 + 3, we have x32 = y22 − 3, so

y1x
3
2 = y1(y

2
2 − 3) = y1y

2
2 − 3y1.

Substituting this gives:

Y3 = (y1y
2
2 − 3y1)− 3x21x2y2 + 3x1x

2
2y1 − y21y2 + y1y

2
2 + 3y1 − 3y2

= −3x21x2y2 + 3x1x
2
2y1 − y21y2 + 2y1y

2
2 − 3y2.

Finally, rewrite −3y2 as 9y1 − (y21 + 9)y2 plus terms that cancel using y21 = x31 + 3 (equivalently, just

regroup to match the u(π) basis). A clean regrouping yields:

Y3 = 9y1 − (y21 + 9) y2 + 3x1y1 x
2
2 + y1 y

2
2 − 3x21 (x2y2). (27)

26

Matrix form. Putting together the above, we have thatA(ϕ)× uT (π) equals the Jacobian coordinates

of ϕ+ π where

A(ϕ) =

 6 x21 −2y1 x1 0 0
9y1 0 −(y21 + 9) 3x1y1 y1 −3x21
−x1 1 0 0 0 0

 .

The alternative form B(ϕ) × uT (π) follows immediately from uT (π) = G × uT (π) by setting B(ϕ) =
A(ϕ)×G. This finishes the proof.

Lemma 4. Let ϕ, π ∈ E(𝔽p) be two points in affine coordinates such that x(ϕ) ̸= x(π). Then the Jacobian
coordinates of ϕ + δπ where δ ∈ {0, 1},9 is given by C(δ, ϕ) × uT (π) where C(δ, ϕ) ∈ 𝔽3×6

p is a matrix
that depends only on δ, ϕ, defined by:

C(δ, ϕ) =

 6δ + (1− δ)x(ϕ) δx2(ϕ) −2δy(ϕ) δx(ϕ) 0 0
9δy(ϕ) + (1− δ)y(ϕ) 0 −δ(y(ϕ)2 + 9) 3δx(ϕ)y(ϕ) δy(ϕ) −3δx2(ϕ)
−δx(ϕ) + (1− δ) δ 0 0 0 0


Equivalently, Jacobian coordinates of ϕ+ δπ are also given byD(δ, ϕ)×uT (π) whereD(δ, ϕ) ∈ 𝔽3×(1+5n)

p

is defined asD(δ, ϕ) = C(δ, ϕ)×G.

Proof. The proof is analogous to the proof of Lem. 3. The only difference is that we need to consider the

case where δ = 1 and δ = 0 separately.

Lemma 5. Given a point π ∈ E(𝔽p) in Jacobian coordinates (X,Y, Z) (which is not unique) we can obtain
a uniform representation of the same point as diag(λ2, λ3, λ)× (X,Y, Z)T for λ sampled uniformly from 𝔽∗p
where diag(λ2, λ3, λ) is a diagonal matrix with the entries λ2, λ3, λ on the diagonal. More precisely,

diag(λ) =

λ2 0 0
0 λ3 0
0 0 λ


The proof follows from the definitions of Jacobian representation and we skip the details.

5.3 Decomposable Randomized Encodings: Definitions and Preliminaries

Randomized encodings allow us to represent a function f by a simpler function f̂ such that the encoding

f̂(x; ρ) (where ρ is some randomness independent of x) reveals f(x) but nothing else about x beyond

what is revealed by f(x) itself. This section presents the formal framework for decomposable randomized

encodings, following the definitions (some of them verbatim) from Ishai [Ish13].

Definition 12 (Randomized encoding (Definition 3.1, [Ish13])). Let X,Y, Ŷ , R be finite sets and let f :
X → Y . A function f̂ : X ×R→ Ŷ is a randomized encoding of f if it satisfies:

• δ-Correctness. There exists a decoder (possibly randomized) Dec : Ŷ → Y such that for all x ∈ X
and ρ ∈ R,

Pr[Dec(f̂(x, ρ)) ̸= f(x)] ⩽ δ

where randomness is over the choices of ρ and the decoder. We skip mentioning δ when it is a negligible
function of the appropriate parameters.

9δπ denotes the point π if δ = 1 and O if δ = 0.

27

• ϵ-privacy. There exists a randomized simulator Sim : Y → Ŷ such that for all x ∈ X ,

Sim(f(x)) ≈ϵ f̂(x, ρ),

where ρ ← R is uniform and ≈ϵ denotes distributions that are statistically close. Again, we skip
mentioning ϵ when it is a negligible function of the relevant parameters.

Additionally, a randomized encoding is said to be efficient if its encoding and decoding complexities are

polynomial in the size of the input. In the literature, various relaxations of the above definition are consid-

ered. For example, one may consider a randomized encoding that is only computationally or statistically

private. However, we focus on the perfect privacy, as it suffices for our purposes.

Next we define the decomposability property and some useful properties of randomized encodings.

Definition 13 (Decomposable randomized encoding (DRE) (Definition 4.1, [Ish13])). For f : X1 × · · · ×
Xn → Y , a decomposable randomized encoding of f is one that has the form

f̂((x1, . . . , xn), ρ) = (f̂1(x1, ρ), . . . , f̂n(xn, ρ))

for some functions f̂i : Xi ×R→ Ŷi.

The decomposability property is what makes DRE particularly useful: each input component xi can
be encoded independently (though the encodings may share randomness ρ), and the evaluation algorithm

can reconstruct f(x1, . . . , xn) from these individual encodings. This structure is essential for the efficient

garbled circuit constructions we present in the following sections.

Lemma 6 (Concatenation (Lemma 3.3, [Ish13])). Suppose f̂i(x, ρi) is a randomized encoding of fi(x) for

i = 1, . . . , k. Then the function f̂(x, (ρ1, . . . , ρk))
def
= (f̂1(x, ρ1), . . . , f̂k(x, ρk)) is a randomized encoding

of f(x)
def
= (f1(x), . . . , fk(x)).

Lemma 7 (Composition (Lemma 3.4, [Ish13])). Suppose f̂(x, ρ) is a randomized encoding of f(x) and
f̂ ′((x, ρ), ρ′) is a randomized encoding of f̂(x, ρ) (viewing the latter as a deterministic function of (x, ρ)).

Then f̂ ′′(x, (ρ, ρ′))
def
= f̂ ′((x, ρ), ρ′) is a randomized encoding of f(x).

5.4 Decomposable Randomized Encodings Constructions

Building on [FKN94], Ishai [Ish13] presents a simple decomposable encoding for summation in finite

abelian groups. We state a slight generalization to weighted summation here.

Lemma 8 (DRE for weighted group summation (Generalization of Claim 4.2, [Ish13])). Let G be a fi-
nite abelian group and let fa1,...,an : Gn → G be the group summation function fa1,...,an(x1, . . . , xn) =∑n

i=1 aixi.
10 Let R = {(ρ1, . . . , ρn) ∈ Gn :

∑n
i=1 aiρi = 0}. Then the function f̂a1,...,an : Gn × R → Gn

defined by f̂a1,...,an((x1, . . . , xn), (ρ1, . . . , ρn)) = (x1 + ρ1, . . . , xn + ρn) is a decomposable encoding of
fa1,...,an .

Proof. As in Ishai [Ish13], it is easy to verify that f̂a1,...,an maps an input x = (x1, . . . , xn) to a uniformly

random input x′ ∈ Gn such that fa1,...,an(x
′) = fa1,...,an(x). Thus, we can let Dec = fa1,...,an and let

Sim(y) output a random n-tuple in f−1
a1,...,an(y).

10

Where + is the group operation and aρ =

a times︷ ︸︸ ︷
ρ+ . . .+ ρ.

28

Remark 5. Wewill actually use the above lemma on fa1,...,an(x1, . . . , xn) =
∑n

i=1 aixi with inputsx1 . . . xn
in Jacobian representation which is not unique for every group element. Thus, we randomize the representa-
tions in the DRE. More specifically, f̂a1,...,an : 𝔾n × 𝔾n × 𝔽∗p

n → 𝔾n defined by

f̂a1,...,an((x1, . . . , xn), (ρ1, . . . , ρn), (λ1, . . . , λn)) = (diag(λ2
1, λ

3
1, λ1)×(x1+ρ1)

T , . . . , diag(λ2
n, λ

3
n, λn)×(xn+ρn)

T)

where diag(λ2
i , λ

3
i , λi) is the diagonal matrix with λ2

i , λ
3
i , λi on the diagonal as defined in Lem. 5.

We will also need a DRE for private weights. However, we limit the inputs to be either 0 or 1 as it

suffices for our purposes and keeps the DRE encoding function efficient.

Lemma 9 (DRE for private affine functions). Let G be a finite abelian group and let f : {G ×{0, 1}}n → G
be the group summation function f((a1, x1), . . . , (an, xn)) =

∑n
i=1 xiai.

11 Let R = {(ρ1, . . . , ρn) ∈ Gn :∑n
i=1 ρi = 0}. Then the function f̂ : {G×{0, 1}}n×R→ Gn defined by f̂(((a1, x1), . . . , (an, xn)), (ρ1, . . . , ρn)) =

(x1a1 + ρ1, . . . , anxn + ρn) is a decomposable encoding of f .

Proof. The proof of this claim is identical to the proof of Lem. 8. This is a DRE with respect to the input

blocks (ai, xi). It’s decomposable because the i-th output depends only on (ai, xi) and ρi.

5.5 DRE for the Scalar Multiplication

For the BN254 group, we define the function h in Def. 14, and construct a DRE for this function.

Definition 14. Let ℓ = 1 + 5n, n = ⌈log2 p⌉ and let h : (𝔽q × {0, 1})ℓ → 𝔾 be the function defined by:12

h((r, u1(π)), (r, u2(π)) · · · (r, uℓ(π))) 7−→ rπ.

The function h can be expressed as a matrix multiplication with a transition from field to group operations.
The computation proceeds in two stages:

1. Field operations: For each i ∈ {0, . . . , n − 1}, compute the three Jacobian coordinates of riπ using
matrix multiplication over 𝔽p:

N(ri)× uT (π)

where N(ri) ∈ 𝔽3×ℓ
p is the matrix defined in Lem. 2 and r0 · · · rn−1 is the bit decomposition of r; i.e.∑

i 2
i · ri = r.

2. Group operations: Apply weighted group sum using as the group operation:

n−1∑
i=0

2i(riπ) = rπ

where each riπ is represented by its Jacobian coordinates (X,Y, Z) computed in Step 1 and the operation∑n−1
i=0 2i(·) uses group operations (elliptic curve addition and scalar multiplication in the group 𝔾).

Informally, for each i, the computationN(ri)× uT (π) yields the three field elements (X,Y, Z) ∈ 𝔽3p
representing the Jacobian coordinates of the group element riπ. The final weighted sum

∑n−1
i=0 2i(riπ)

combines these group elements using elliptic curve addition, which operates on all three coordinates si-

multaneously.

11

Where + is the group operation and ax = 0 if x = 0 and a otherwise.

12

The inputs of h are actually from 𝔽q × {0, 1}ℓ but we repeat the input r to highlight the decomposability.

29

Theorem 4. There exists a function ĥ such that ĥ : (𝔽q × {0, 1})ℓ × (R,Λ, S) → 𝔽3nℓp is a DRE for h as
defined in Def. 14 where R,Λ, S is appropriately sampled randomness used in the encoding.

Proof. We start by describing the function ĥ in more detail. More specifically, we define the function

ĥ ((r, u1(π)), (r, u2(π)) · · · (r, uℓ(π)), R,Λ, S) = (ĥ1(r, u1(π), R,Λ, S), . . . , ĥℓ(r, uℓ(π), R,Λ, S))

where ĥk(r, uk(π), R,Λ, S) = {Di,j,k · uk(π) + si,j,k}i,j , where Di = diag(λ3
i , λ

2
i , λi) ×D(ri, ρi) and

i ∈ {1, . . . , n}, j ∈ {1, 2, 3}, k ∈ {1, . . . , ℓ} and Di,j,k is the (j, k)th entry inDi.

Here we sent the randomness such that R = {(ρ1, . . . , ρn) ∈ 𝔾n :
∑n

i=1 ρi = 0}, Λ = (λ1, . . . , λn) ∈
𝔽np and S = {(si,j,k}n,3,ℓi=1,j=1,k=1 ∈ 𝔽3nℓp : ∀i, j

∑ℓ
k=1 si,j,k = 0}.

Decoding Function. The decoding function Dec : 𝔽3nℓp → 𝔾 on input γ1 . . . γk where γk = {ti,j,k}i,j
is either ĥk(r, 0, R,Λ, S) or ĥk(r, 1, R,Λ, S) is defined as follows:

1. For each i ∈ {0, . . . , n − 1} and j ∈ {1, 2, 3}, compute the j-th coordinate of the randomized

Jacobian representation:

t̂i,j =
ℓ∑

k=1

ti,j,k

This correctly recovers the j-th coordinate since

∑ℓ
k=1 si,j,k = 0 by the constraint on S.

2. For each i ∈ {0, . . . , n − 1}, form the point Qi = (t̂i,1, t̂i,2, t̂i,3) ∈ 𝔽3p, which represents the group

element diag(λ3
i , λ

2
i , λi)× (riπ + ρi).

3. Apply the weighted group sum to recover rπ:

n−1∑
i=0

2iQi = rπ

This correctly computes rπ since

∑n−1
i=0 2iρi = 0 by the constraint on R.

Next we derive this DRE for h using Lem. 8 and Lem. 9.

Step 1: DRE for weighted group sum using Lem. 8. Let r =
∑n−1

i=0 ri2
i ∈ 𝔽q be the binary decom-

position of r. We want to compute rπ =
∑n−1

i=0 2i(riπ). Define the function f : 𝔾n → 𝔾 by:

f(r0π, . . . , rn−1π) =
n−1∑
i=0

2i(riπ) = rπ

with weights ai = 2i for i ∈ {0, . . . , n−1}. By Lem. 8 and Remark 5, there exists a DRE f̂ : 𝔾n×R1 → 𝔾n

where R1 = {(ρ0, . . . , ρn−1) ∈ 𝔾n, (λ0, . . . , λn−1) ∈ 𝔽∗p
n :
∑n−1

i=0 2iρi = 0}, where

f̂((r0 ·π, . . . , rn−1 ·π), R1 = ((ρ0, . . . , ρn−1), (λ0, . . . , λn−1))) = (f̂0(r0 ·π,R1), . . . , f̂n−1(rn−1 ·π,R1)

and for each i, f̂i(ri · π,R1) = diag(λ3
i , λ

2
i , λi)× (ri · π + ρi)

T
. The decoding function is Dec1 : 𝔾n → 𝔾

defined by Dec1((y0, . . . , yn−1)) =
∑n−1

i=0 2iyi, which correctly computes r · π since

∑n−1
i=0 2iρi = 0.

30

Step 2: DRE for diag(λ3
i , λ

2
i , λi)× (ri · π + ρi)

T
using Lem. 9. For each i ∈ {0, . . . , n− 1}, we need

to encode the group element ri · π + ρi. Since ri ∈ {0, 1}, we have:

riπ + ρi =

{
π + ρi if ri = 1

ρi if ri = 0

For each i, letEi be the event ρi = π. If ¬Ei then we can apply Lem. 4 to express the randomized Jacobian

coordinates of diag(λ3
i , λ

2
i , λi)× (riπ+ρi)

T
(setting with ϕ = ρi and δ = ri in Lem. 4) as a linear function

of u(π). Specifically:
diag(λ3

i , λ
2
i , λi)×D(ri, ρi)× uT (π)

which can be written asDi × uT (π) whereDi
def
= diag(λ3

i , λ
2
i , λi)×D(ri, ρi) ∈ 𝔽3×(1+5n)

p .

For each coordinate j ∈ {1, 2, 3} (corresponding toX,Y, Z), letDi,j be the j-th row ofDi. Then, the

j-th coordinate of the randomized Jacobian coordinates is:

Di,j × uT (π) =

1+5n∑
k=1

Di,j,k · uk(π)

where Di,j,k is the k-th entry of the row vector Di,j , and uk(π) is the k-th component of u(π). Now, for
each i ∈ {0, . . . , n− 1} and j ∈ {1, 2, 3}, we apply Lem. 9 to encode the function:

gi,j : (𝔽p × {0, 1})1+5n → 𝔽p

defined by gi,j((Di,j,1, u1(π)), . . . , (Di,j,1+5n, u1+5n(π))) =
∑1+5n

k=1 Di,j,k · uk(π). Note that Di,j,k are

known values that depend on ri and the randomness ρi and λi from Step 1. The function gi,j takes as input
pairs (Di,j,k, uk(π)) where Di,j,k ∈ 𝔽p is a field element (the coefficient) and uk(π) ∈ {0, 1} is a bit. By
Lem. 9, there exists a DRE ĝi,j : ((𝔽p×{0, 1}))1+5n×Si,j → 𝔽1+5n

p where Si,j = {(si,j,1, . . . , si,j,1+5n) ∈
𝔽1+5n
p :

∑1+5n
k=1 si,j,k = 0}, defined by:

ĝi,j((Di,j,1, u1(π)), . . . , (Di,j,1+5n, u1+5n(π))), Si,j = (si,j,1, . . . , si,j,1+5n)) =

(Di,j,1 · u1(π) + si,j,1, . . . , Di,j,1+5n · u1+5n(π) + si,j,1+5n)

The decoding function is Deci,j : 𝔽1+5n
p → 𝔽p defined by Deci,j((y1, . . . , y1+5n)) =

∑1+5n
k=1 yk, which,

conditioned on the fact that Lem. 4 can be applied (i.e. ¬Ei), correctly computes the correct j-th coordinate
since

∑1+5n
k=1 si,j,k = 0.

Composition and final DRE. By Lem. 7 and Lem. 6, we can compose the DREs from Step 1 and Step 2

to obtain the final DRE ĥ for h.

Correctness and Security. Our analysis holds conditioned on ¬Ei for each i = 1, . . . , n. Pr[Ei] =
Pr[ρi = π] = 1/|𝔾|, thus the correctness and privacy errors of the final DRE are δ = ϵ = n/|𝔾|.

5.6 Completing the Garbled Circuit

We wish to design an efficient Garbled Circuit that on public input an (on-chain) Lamport signature on

π = (x(π), y(π)) outputs r ·π. Here r ∈ 𝔽q is a private input known at the time garbling that is considered

hard-coded in the circuit.

31

Construction 2. The garbled circuit GC for the function fr : 𝔾→ 𝔾, fr(π) = rπ will be as follows:
Garble(r)→ ctGC, ek: Outputs a Lamport secret key

ek =

(
L0
x,0 . . . L0

x,n−1 L0
y,0 . . . L0

y,n−1

L1
x,0 . . . L1

x,n−1 L1
y,0 . . . L1

y,n−1

)

and the garbled circuit ctGC computed in three steps:

1. Elliptic curve validation: The garbled circuit first verifies that the input point π = (x(π), y(π)) lies
on the curve E, i.e., it checks that y(π)2 ≡ x(π)3 + 3 (mod p).

2. Binary decomposition: If the validation passes, the circuit computes the binary decompositionu(π) ∈
{0, 1}1+5n ofu(π) = (1, x(π), y(π), x(π)2, y(π)2, x(π)y(π)). These two steps are implemented using
a privacy-free Boolean garbled circuit. Evaluating this circuit outputs the labels Luk(π)

u,k for k ∈ [ℓ].

3. DRE encoding: For each k ∈ {1, . . . , ℓ} where ℓ = 1 + 5n, the garbled circuit comes hardwired with
the DRE encoding from Thm. 4. Specifically:

• For each bit position k ∈ [ℓ] where ℓ = 1 + 5n, the garbler precomputes ĥk((r, 0), ω) and
ĥk((r, 1), ω).

• The garbled circuit contains an encryption of ĥk((r, 0), ω) under the 0-label L0
u,k for uk(π).

• The garbled circuit contains an encryption of ĥk((r, 1), ω) under the 1-label L1
u,k for uk(π).

Encode(ek, π)→ L: Outputs the Lamport signature of π

L =
(
Lx0
x,0 . . . L

xn−1

x,n−1 Ly0
y,0 . . . L

yn−1

y,n−1

)
Eval(ctGC, Lπ)→ r · π: The evaluator, given the input labels Lπ , evaluates the Boolean circuits to obtain

labels for u(π), and decrypts the appropriate encryptions to obtain ĥk(r, uk(π)) for each k. The evaluator
then decodes the DRE as follows (Thm. 4):

• We recast hk(r, uk(π), ω) as {ti,j,k}i∈[n],j∈{1,2,3}. Then the Prover aggregates shares to cancel the
si,j,k-terms:

t̂i,j =

ℓ∑
k=1

ti,j,k.

• Interpreting (t̂i,1, t̂i,2, t̂i,3) as the Jacobian coordinates of a masked pointQi, the final output is obtained
by the usual bit-weighted recombination

out =
∑
i

2iQi.

Since Qi = riπ + ρi and
∑

i 2
iρi = 0, then out = rπ.

Intuitively, the heavy work (group operations and most algebra) is pushed to the Prover and to the Ver-

ifier’s offline preprocessing, while the online garbled circuit mainly performs validation, low-level arith-

metic for feature extraction, and symmetric-key decryptions for table selection to output the precomputed

DRE components.

Theorem 5. Constr. 2 is an adaptively secure garbling scheme (Def. 3) for the function fr : 𝔾→ 𝔾, fr(π) =
rπ in the random oracle model.

32

The proof follows directly from Thm. 4 and the security of Yao’s garbling scheme [LP09].
13

For adaptive

security we rely on standard random oracle techniques [BHR12a] (namely equivocal encryption).

Remark 6 (Optimizations for the Randomized Encoding). In practice we integrate the following optimiza-
tions:

• Several entries in the matrixD are 0. In our implementation the inner products only need to grow with
the number of non zero-entries. This reduces garbled circuit size by a factor of 1.87.

• Rather than giving two ciphertexts encrypting ĥi((r, 0), R, S) and ĥi((r, 1), R, S) we just encrypt one
of them and let the appropriate shifts be the output of a Pseudorandom Function (e.g. a random oracle)
on secret the corresponding label, such that the latter can be computed locally. This reduces garbled
circuit size by a factor of 2.

Efficiency. We provide a theoretical estimation of our garbled circuit size. Since it is hard to theoretically

estimate the size of the circuit for (1) and (2) of the construction (Elliptic Curve validation and Binary

Decomposition) we postpone this for the experimental evaluation in Sec. 9. However, the main cost stems

from (3), the DRE Encoding. Taking into account our optimizations, the latter consists of:

• For each i = 0, . . . , n− 1

– 3n+ 1 log |𝔽|-sized ciphertexts for the X coordinate.

– 4n+ 1 log |𝔽|-sized ciphertexts for the Y coordinate.

– n+ 1 log |𝔽|-sized ciphertexts for the Z coordinate.

Here 𝔽 is the field generated by the E/𝔽p group, therefore |𝔽| = 254 and n = 254. This gives us:

254 · (8 · 254 + 3) · 254 bits = 15.65MiB

This is validated empirically in Sec. 9.

6 BABE Protocol

6.1 Honest Setup Protocol

A BitVM-core protocol (Sec. 3) has two phases: a setup phase and a proving phase. The setup phase

consists of off-chain interaction between the Prover and the Verifier and terminates with some Bitcoin

being locked (Fig. 4). The proving phase consists of on-chain interaction between the Prover and the

Verifier and ends with the Prover posting a transaction to withdraw the locked Bitcoin. To explain the

core aspects of the protocol, we first describe the protocol assuming that the setup is run honestly by both

Prover and Verifier (Algs. 1 and 2), but either party may be malicious in the proving phase. In Sec. 6.2, we

discuss how the Prover and Verifier can verify that the setup was run correctly and abort if it was not.

13

For the optimization we propose, i.e. instead of letting the circuit compute the ĥk((r, uk), ω)’s we precompute them and

encrypt them under the corresponding labels, the simulator may just encrypt the simulated ĥk’s for the actual uk’s and provide

encryption of 0 for the other bit.

33

Algorithm 1 Setup algorithms (honest Prover and Verifier)

1: function Gen(R)
2: return Groth16.Gen(R)
3: end function

4: procedure PSetup(crs) ▷ Run by Prover

5: (skP , pkP)← SigBTC .Gen(1
λ) ▷ Sample signing key

6: send (pkP) to Verifier

Upon receiving (pkV , hmsg, epk, ctsetup) from Verifier:

7: (lskP , lpkP)← LampSig.Gen(1λ) ▷ Sample Lamport key

8: (T ,S)← CreateTxSet(pkP , pkV , lpkP , h
msg, epk) ▷ See Alg. 3

9: presigsP ← SignTxsP (skP , T) ▷ See Alg. 3

10: send (pkP , lpkP , presigsP) to Verifier

Upon receiving (presigsV) from Verifier:

11: Sign txDeposit and submit to Bitcoin via FBTC.WRITE(txDeposit)
12: stP ← (skP , lskP , presigsV , ctsetup, ctGC)
13: return (𝕩, T ,S, stP)
14: end procedure

15: procedure VSetup(crs) ▷ Run by Verifier

Upon receiving (pkP) from Prover:

16: 𝕩← GenStmt(pkP) ▷ Application-specific: map Prover to statement

17: (skV , pkV)← SigBTC .Gen(1
λ) ▷ Sample signing key

18: msg←$ 𝔾T , r ←$ ℤp ▷ Sample secrets

19: ctsetup ←WE.Encsetup(crs,𝕩,msg, r) ▷WE ciphertext (Constr. 1)

20: ctGC, ek← Garble(r) ▷ Garbled circuit ciphertext and encoding key (Sec. 5.6)

21: hmsg ← HashBTC(msg) ▷ Hash message for hashlock

22: for j ∈ {1, . . . , 2m}, b ∈ {0, 1} do
23: epkbj ← HashBTC(ek

b
j) ▷ Hash input labels for hashlock

24: end for

25: send (pkV , hmsg, epk, ctsetup, ctGC) to Prover

Upon receiving (pkP , lpkP , presigsP) from Prover:

26: (T ,S)← CreateTxSet(pkP , pkV , lpkP , h
msg, epk)

27: presigsV ← SignTxsV (skV , T)
28: stV ← (skV , ek, presigsP)
29: send (presigsV) to Prover

30: return (𝕩, T ,S, stV)
31: end procedure

6.1.1 Setup Phase

The setup phase protocol is described in Alg. 1. The Prover initiates the setup by sending his public key pkP
to the Verifier. The Verifier creates the application-specific statement 𝕩 to be proven. For example, in the

lending application from Sec. 1, when the borrower is the Prover, the statement is that the borrower repaid

his loan on Ethereum. The Verifier samples a secret msg and creates the witness encryption ciphertext

(ctsetup in Constr. 1) that doesn’t depend on the proof. He also creates the garbled circuit (Constr. 2) to

compute ctprove, the remaining part of the ciphertext, generating the encoding key ek and the garbled

circuit ciphertext ctGC. The Verifier hashes the secret msg and the garbled circuit’s encoding key ek to be

used in the hashlock scripts. Then, both parties create a set of transaction skeletons
14 T shown in Fig. 5.

The Prover pre-signs the transaction skeletons txChallengeAssert and txNoWithdraw (ones that the Verifier may

14

Recall: transaction skeleton is transaction without transaction witness.

34

Algorithm 2 Prove algorithms

1: procedure PProve(crs,𝕩, T ,S, stP , w) ▷ Run by Prover

2: Parse stP = (skP , lskP , presigsV , ctsetup) and presigsV = (σV
Assert, σ

V
Withdraw)

3: (π1, π2, π3)← Groth16.Prove(crs,𝕩, w)
4: wAssert ← LampSig.Sign(lskP , π1) ▷ Compute Lamport signature

5: Post txAssert with transaction witness wAssert: call FBTC.WRITE(txAssert)

Upon seeing txAssert and∆2 new blocks after txAssert in LP :

6: wWithdraw ← (σP
Withdraw, σ

V
Withdraw) where σ

P
Withdraw ← SigBTC .Sign(skP , txWithdraw)

7: Post txWithdraw with transaction witness wWithdraw: call FBTC.WRITE(txWithdraw)
8: return 1

Upon seeing txChallengeAssert in LP :

9: Extract input labels L from the transaction witness of txChallengeAssert
10: ctprove ← EvalGC(ctGC, L) ▷ Evaluate garbled circuit (Sec. 5.6)

11: msg←WE.Dec(ctsetup, ctprove, π2, π3) ▷ Decrypt message (Constr. 1)

12: wWronglyChallenged ← (σP
WronglyChallenged,msg) where σP

WronglyChallenged ← SigBTC .Sign(skP , txWronglyChallenged)
13: Post txWronglyChallenged with transaction witness wWronglyChallenged: call FBTC.WRITE(txWronglyChallenged)
14: end procedure

15: procedure VProve(crs,𝕩, T ,S, stV) ▷ Run by Verifier

Upon seeing txAssert in LV :

16: Parse stV = (skV , ek, presigsP) and presigsP = (σP
ChallengeAssert, σ

P
NoWithdraw)

17: Extract π1 and Lamport signature µ from the transaction witness of txAssert
18: L← Encode(ek, π1) ▷ Compute input labels (Sec. 5.6)

19: wChallengeAssert ← (σP
ChallengeAssert, σ

V
ChallengeAssert, µ, L) where σ

V
ChallengeAssert ← SigBTC .Sign(skV , txChallengeAssert)

20: Post txChallengeAssert with transaction witness wChallengeAssert: call FBTC.WRITE(txChallengeAssert)

Upon seeing txChallengeAssert and∆1 new blocks after txChallengeAssert in LV :

21: wNoWithdraw ← (σP
NoWithdraw, σ

V
NoWithdraw) where σ

V
NoWithdraw ← SigBTC .Sign(skV , skP , txNoWithdraw)

22: Post txNoWithdraw with transaction witness wNoWithdraw: call FBTC.WRITE(txNoWithdraw)
23: return 1
24: end procedure

post during the proving phase). Similarly, the Verifier pre-signs the transaction skeletons txAssert and
txWithdraw (ones that the Prover may post during the proving phase). At the end, the Prover stores the state

stP consisting of his secret keys, the pre-signatures sent by the Verifier, the witness encryption ciphertext

ctsetup, and the garbled circuit ciphertext ctGC. The Verifier’s state stV consists of his secret keys, and the

pre-signatures sent by the Prover.

6.1.2 Proving Phase

The proving phase protocol is described in Alg. 2. In the proving phase, the Prover generates a Groth16

proof (π1, π2, π3) using the witness for the statement 𝕩 that was agreed upon during the setup phase. The

proving phase involves the following transactions (shown in Fig. 5) posted on Bitcoin:

1. Assert: used by the Prover to post the proof element π1.

2. ChallengeAssert: used by the Verifier to post the input labels for the proof π1. The Bitcoin script

verifies that the input labels are for the same proof π1 that the Prover posted.

3. If the Prover’s proof is valid:

(a) WronglyChallenged: The Prover evaluates the garbled circuit to compute ctprove = rπ1, de-
crypts the secret msg (Constr. 1), then posts this transaction. The Bitcoin script requires the

35

Algorithm 3 Helper functions for Algs. 1 and 2

1: function CreateTxSet(pkP , pkV , lpkP , h
msg, hek

)

2: Construct transaction skeletons txDeposit, txAssert, txChallengeAssert, txNoWithdraw, txWronglyChallenged, txWithdraw as in App. A.1

3: T := {txDeposit, txAssert, txChallengeAssert, txNoWithdraw, txWronglyChallenged, txWithdraw}
4: S := {txWithdraw}
5: return (T ,S)
6: end function

7: function SignTxsP (skP , T)
8: σP

ChallengeAssert := SigBTC .Sign(skP , txChallengeAssert)
9: σP

NoWithdraw := SigBTC .Sign(skP , txNoWithdraw)
10: return (σP

ChallengeAssert, σ
P
NoWithdraw)

11: end function

12: function SignTxsV (skV , T)
13: σV

Assert := SigBTC .Sign(skV , txAssert)
14: σV

Withdraw := SigBTC .Sign(skV , txWithdraw)
15: return (σV

Assert, σ
V
Withdraw)

16: end function

17: function VerifySigsP (pkV , T , presigsV)

18: Parse presigsV = (σV
Assert, σ

V
Withdraw)

19: Verify SigBTC .Verify(pkV , txAssert, σ
V
Assert)

20: Verify SigBTC .Verify(pkV , txWithdraw, σ
V
Withdraw)

21: end function

22: function VerifySigsV (pkP , T , presigsP)
23: Parse presigsP = (σP

ChallengeAssert, σ
P
NoWithdraw)

24: Verify SigBTC .Verify(pkP , txChallengeAssert, σ
P
ChallengeAssert)

25: Verify SigBTC .Verify(pkP , txNoWithdraw, σ
P
NoWithdraw)

26: end function

Prover to provide the decrypted secret msg.

(b) Withdraw: The Prover posts this transaction to withdraw the locked Bitcoin. This transaction

can only be posted ∆2 blocks after he posted Assert. This timelock gives the Verifier enough

time to “stop” a malicious Prover.

4. If the Prover’s proof is invalid:

(a) NoWithdraw: This prevents the Prover from ever posting theWithdraw transaction. This trans-

action can only be posted∆1 blocks after the Verifier posted ChallengeAssert, which gives the

Prover enough time to postWronglyChallenged if he decrypted the secret msg.

6.1.3 Transaction Graph

The transactions posted during the proving phase form a graph where the outputs of one transaction are

the inputs of another (this graph is shown in Fig. 5). A detailed specification of the transactions is given

in App. A.1. This section describes the locking scripts used and how they ensure the protocol’s security.

Deposit transaction. This locks v amount of Bitcoin. This transaction is posted at the end of the setup

phase. The output of this transaction carries a locking script CheckSig(pkP) ∧ CheckSig(pkV) which
means that any transaction spending it must be signed by both the Prover and the Verifier. This ensures

that neither party can unilaterally withdraw the Bitcoin.

36

Deposit
In Out

v v

Assert
In Out ChallengeAssert

In Out

WronglyChallenged
In Out

NoWithdraw
In Out

Withdraw
In Out

v v

∗ ∨

∨

CheckLampSig(lpkP)

CheckSig(pkP) ∧ CheckSig(pkV)

CheckSig(pkP) ∧ CheckSig(pkV) ∧ RelTimelock(∆2)

CheckSig(pkP) ∧ CheckSig(pkV)

CheckSig(pkP) ∧ CheckSig(pkV)
∧CheckLampSigsMatch(lpkP , epk)

CheckSig(pkV)
∧RelTimelock(∆1)

HashLock(H(msg))
∧CheckSig(pkP)

Prover

Figure 5: Illustration of the Bitcoin transaction graph. Gray boxes represent transactions. A transaction’s

inputs and outputs are represented by orange and green boxes, respectively, inside the transaction. Num-

bers inside the inputs and outputs represent the amount of Bitcoin. Empty boxes indicate the minimum

amount required to cover the transaction fees. Arrows connect one transaction’s output used as an in-

put by another transaction. The ∨ shape indicates that the transaction output can be used as input by

any one out of multiple possible transactions. Locking scripts written on an arrow entering a transaction

must be satisfied by the transaction witness. Arrows entering a transaction posted by the Prover are blue

and arrows entering a transaction posted by the Verifier are red. A red CheckSig(pkV) indicates that the
transaction taking that input is pre-signed by the Verifier during setup. Similarly, a blue CheckSig(pkP)
indicates that the transaction is pre-signed by the Prover during setup.

Pre-signed transactions. During the setup phase, the Prover and the Verifier pre-sign the set of allowed

transactions that can be posted by the other party during the proving phase. For example, the Verifier pre-

signs theWithdraw transaction that usesDeposit’s output as an input and gives this signature to the Prover
during setup. Since the signatures are on the transaction skeleton, they can be signed during setup without

knowing the transaction witnesses. This ensures the following:

• Unilateral posting: The Prover can post theWithdraw transaction during the proving phase without

having to depend on the Verifier to sign it.

• Output binding: The Prover cannot post any other transaction that usesDeposit’s output as an input

because he does not have the Verifier’s signature for such a transaction.

• Input binding: The pre-signed transactionWithdraw commits to the hash of a specific Assert trans-
action skeleton because it uses an output of Assert as an input. This ensures that the Prover cannot

post theWithdraw transaction unless he first posts the correct Assert transaction.

In general, these properties ensure that only transactions from the set T created during the setup phase

can be posted during the proving phase.

Timelocks. The Withdraw transaction must take as another input the 0-th output of Assert, which
carries the condition RelTimelock(∆2) in its locking script. This ensures that the Prover cannot post the

Withdraw transaction untilAssert is posted on chain and the Bitcoin chain has grown by at least∆2 blocks,

which should give enough time for the Verifier to “stop” a malicious Prover. How does the Verifier “stop”

the Prover?

Connector outputs. A connector output is an output of a transaction when there are multiple transac-

tions that could potentially spend it. For example, in Fig. 5, the 0-th output of Assert is a connector output

37

because it can be spent by either the Withdraw or the NoWithdraw transaction. If the Verifier posts a

NoWithdraw transaction within∆2 blocks of the Assert transaction, he stops the Prover from posting the

Withdraw transaction because one of the inputs of theWithdraw transaction is no longer available.

Another connector output, the output of ChallengeAssert, ensures that it can be spent in one of two

ways. Either the Prover posts the WronglyChallenged transaction, whose HashLock(H(msg)) script re-
quires the Prover to have decrypted the secret msg. Or, the Verifier posts the NoWithdraw transaction

if the Prover doesn’t post the WronglyChallenged transaction within ∆1 blocks of the ChallengeAssert
transaction. Posting NoWithdraw stops the Prover from ever posting theWithdraw transaction.

Commitment using Lamport signatures. The Assert transaction is used by the Prover to post π1 on
chain and the ChallengeAssert transaction is used by the Verifier to post the input labels for the proof π1
on chain. The locking scripts in these transactions’ inputs ensure that the Verifier indeed posts input labels

for the same proof π1 that the Prover posts.
The input of the Assert transaction carries a locking scriptCheckLampSig(lpkP) which means the

Prover must provide his Lamport signature µ on some message π1. The script does not care about the

message π1 itself, but only that the Prover has committed to some message.

Conveniently, the input labels of the garbled circuit are exactly the Lamport signatures of the input π1
under the garbled circuit’s encoding key ek. So, the input of the ChallengeAssert transaction requires the

Verifier to provide a Lamport signature under the public key epk (corresponding to the encoding key ek).
Not only that, the script CheckLampSigsMatch(lpkP , epk) requires the Verifier to also post a Lamport sig-

nature for the same message under the Prover’s Lamport key lpkP . This ensures that the Verifier Lamport

signs the same π1 that the Prover did, since the Verifier cannot forge a Lamport signature under lpkP for

any message other than π1 without knowing the Prover’s Lamport secret key. This approach to matching

the labels was first proposed in [Che25].

Putting it all together. Together, the transaction graphs ensure that i) the Prover commits to a proof

element π1, ii) the Verifier posts input labels for the same proof π1, iii) the Prover can postWithdraw only

if he decrypts msg, and iv) the Verifier can post NoWithdraw otherwise. We prove in Sec. 7 that these

transactions together with the witness encryption and garbled circuit satisfy the BitVM-core security

properties.

6.2 Verifying Setup Correctness

We augment the setup phase of the protocol to allow the Prover and Verifier to verify that the setup was

run correctly. This verification is done off-chain either party can abort if the verification fails, without

losing any money, because this is done before the Bitcoin is locked.

Verifying setup involves verifying the following:

1. Statement 𝕩 (deterministic given Prover’s public key pkP)

2. Transactions T ,S (created deterministically given both parties’ Bitcoin public keys, Prover’s Lam-

port public key, hashes of the input labels, and hash of the secret msg)

3. Pre-signatures exchanged between the Prover and the Verifier (verified using the signature verifica-

tion algorithm)

4. Randomness used for encryption/garbling is independent of the proof element π1 (required for the

condition in Lem. 4). This is satisfied in many use-cases, e.g., when the relation requires a certain

transaction to be finalized in Ethereum, the Verifier cannot compute π1 at setup. Otherwise, this can
be achieved by adding some randomness to the Prover’s Groth16 witness.

38

5. Witness encryption ciphertext ctsetup

6. Garbled circuit ciphertext ctGC and hashes of the input labels

What remains is to verify that the witness encryption ciphertext ctsetup and the garbled circuit were

computed correctly with respect to the statement 𝕩 and the secret msg. This verification, carried out

off-chain, can be achieved using various techniques from the literature, such as zero-knowledge proofs or

cut-and-choose. We adopt cut-and-choose for its relative simplicity and efficiency.

The cut-and-choose setup protocol is shown in Alg. 4 (Prover) and Alg. 5 (Verifier). In this protocol,

the Verifier generates NCC instances, each with a secret msgi, independent randomness ri, and a garbled

circuit for fi(π) → riπ. The Verifier commits to all instances, then theProver randomly selects a subset

I ⊂ [NCC] of size MCC. For every instance i /∈ I , the Verifier “opens” the instance by revealing the

underlying secrets and the randomness used for both encryption and garbling. The Prover then recomputes

the corresponding ciphertexts and labels to check that they match the Verifier’s commitments. The Prover

finalizes the remainingMCC instances by storing their ciphertexts. After verifying correctness forNCC −
MCC opened instances, the probability that allMCC finalized instances are faulty is at most perr =

(
NCC
MCC

)−1
.

In the proving phase (Alg. 6), the Verifier reveals the input labels for allMCC finalized instances and the

Prover can withdraw Bitcoin if he successfully decrypts the secret for any one of theseMCC instances—an

event that succeeds except with probability perr. In Sec. 9, we explore different parameter choices and the

trade-offs in setup time, off-chain storage, and on-chain cost. We also discuss possible optimizations to

reduce on-chain cost by not posting all input labels on chain.

7 Security Proof

7.1 Security Proof Assuming Honest Setup

To warm up, we prove that the protocol in Algs. 1 and 2 is secure in the proving phase assuming that the

setup is run honestly by both Prover and Verifier. First, we define this honest-setup security.

Definition 15 (Honest-Setup u-Robustness). For all NP relations R, all PPT adversarial Verifiers V ∗, all
rounds r ∈ ℕ, the following holds:

Pr

tx ∈ Lr+u
P :

crs← Gen(R)
out⟨PSetup(crs), VSetup(crs)⟩ = (𝕩, T ,S, stP , stV)
outP (⟨PProve(crs,𝕩, T ,S, stP , w), V ∗(crs,𝕩, T ,S, stV)⟩r) = 1
(𝕩,𝕨) ∈ R
tx ∈ S


⩾ 1− 2−κ − negl(λ) (28)

Definition 16 (Honest-Setup Knowledge Soundness). For all NP relations R, all PPT adversarial Provers
P ∗, there exists a PPT extractor E such that for every benign auxiliary input aux ∈ {0, 1}poly(λ):

Pr

(𝕩,𝕨) ∈ R :

crs← Gen(R)
out⟨PSetup(crs), VSetup(crs)⟩ = (𝕩, T ,S, stP , stV)
∃r ∈ ℕ : outV (⟨P ∗(crs,𝕩, T ,S, stP , aux), VProve(crs,𝕩, T ,S, stV)⟩r) = 1
∃ τ ∈ ℕ, ∃ tx ∈ S, ∃ honestP : tx ∈ LτP
𝕨← E(crs,𝕩, T ,S, stP , aux)


⩾ 1− 2−κ − negl(λ) (29)

39

Note that the difference with respect to the BitVM-core security definitions (Sec. 3) is that setup is

run by PSetup and VSetup instead of an adversarial Prover P ∗
or Verifier V ∗

. Other than that, we provide

the outputs of the setup phase to the adversarial Prover P ∗
or Verifier V ∗

in the proving phase since they

were not participating in the setup phase. In the case of honest setup, the setup doesn’t abort by definition.

7.1.1 Proof of Honest-Setup u-Robustness

Theorem 6. Assuming FBTC satisfies safety, uBTC-liveness, and (τ, s)-chain growth for s > uBTC , the
protocol in Algs. 1 and 2 with ∆1 > 2uBTC and ∆2 > uBTC satisfies honest-setup u-robustness where
u = τ−1(∆2 + uBTC).

Proof. For a given NP relationR, let crs← Groth16.Gen(R) and let 𝕩, T ,S, stP , stV be generated as per

Alg. 1, where S = {txWithdraw} (see Alg. 3 line 4). Suppose the Prover runs PProve as per Alg. 2 starting at

round r.
We go through the steps of thePProve algorithm and show thatwith overwhelming probability, txWithdraw /∈

Lr+u
P and we calculate the value u.
Alg. 2 line 3: Prover generates (π1, π2, π3). By perfect correctness of Groth16 (Thm. 2, Def. 1), this is

a valid proof, i.e., Verify(crs,𝕩, (π1, π2, π3)) = 1.
Alg. 2 line 5: Prover calls FBTC.WRITE(txAssert) at round r when LrP has height h0. txAssert is valid

because it contains a valid Lamport signature for the key lpkP (Alg. 2 line 4). It is also unstoppable with

respect to the state stV because stV does not contain the Lamport signing key lskP . Therefore, due to

liveness, txAssert ∈ LP [: h1] where h1 ⩽ h0 + uBTC .

Case 1: txChallengeAssert /∈ LP [: h1 +∆2 − uBTC] for all rounds. When h(LP) = h1 +∆2, Prover calls

FBTC.WRITE(txWithdraw) (Alg. 2 line 7). txWithdraw is valid because i) its parents
15 txDeposit and txAssert are

in the ledger, ii) its transaction witness contains the Verifier’s pre-signature obtained during the setup and

the Prover’s signature (Alg. 2 line 6), and iii) the timelock on its input (1) has expired. Moreover, txWithdraw

is uBTC-unstoppable when ∆1 > 2uBTC because i) txNoPayout is not valid because if txChallengeAssert
was included by the adversary at height > h1 + ∆2 − uBTC , the timelock on input (1) of txNoWithdraw

would not expire by height h1 + ∆2 + uBTC , and ii) the adversary (not knowing skP) cannot produce
a transaction witness for any other transaction spending either input of txWithdraw. Therefore, due to

liveness, txWithdraw ∈ LP [: h2] where h2 ⩽ h1 +∆2 + uBTC .

Case 2: txChallengeAssert ∈ LP [h3] for some h3 < h1 +∆2 − uBTC at some round.

1. Upon seeing txChallengeAssert inLP , Prover extracts the input labels posted by the Verifier in txChallengeAssert
(Alg. 2 line 9). For txChallengeAssert to be valid, its transaction witness must satisfy the script

CheckLampSigsMatch(lpkP , ek) which requires a valid Lamport signature under the Prover’s key

lpkP and a valid Lamport signature under the Verifier’s key ek for the same message. Since the

adversary does not know lskP , he cannot produce a valid Lamport signature under lpkP for any

message other than π1. Therefore, the extracted labels satisfy L← Encode(ek, π1).

2. Prover evaluates the garbled circuit (Alg. 2 line 10) and due to correctness of the garbled circuit

(Def. 3), Eval(ctGC, L) = Encprove(crs, π1; r) (Constr. 1).

3. Prover decrypts the message (Alg. 2 line 11) and due to correctness of the witness encryption scheme

(Lem. 1), the Prover learns msg.

15

A transaction tx is a parent of another transaction tx′ one of the inputs of tx′ is an output of tx.

40

4. Prover constructs the transaction witness for the WronglyChallenged transaction (Alg. 2 line 12).

This transaction is valid because i) its parent txChallengeAssert is in the ledger, and ii) its transaction

witness contains themessagemsg. This transaction isuBTC-unstoppablewhen∆1 > uBTC because

the adversary does not know skP and the timelock ∆1 on its input (0) does not expire in u blocks.

Therefore, due to liveness, txWronglyChallenged ∈ LP [: h4] where h4 ⩽ h3 + uBTC .

5. This guarantees that for all h > h4, txNoWithdraw /∈ LP [: h] because input (1) of txNoWithdraw is no

longer available. This holds in particular for h = h1 +∆2.

6. The Prover calls FBTC.WRITE(txWithdraw) when h(LP) = h1+∆2. Following the same arguments

as in Case 1, this transaction is valid and unstoppable, therefore by liveness, txWithdraw ∈ L
[
P : h2]

where h2 ⩽ h1 +∆2 + uBTC .

Due to the chain growth property (Thm. 3), txWithdraw ∈ Lr+u
P where u = τ−1(∆2 + uBTC).

7.1.2 Proof of Honest-Setup Knowledge Soundness

To prove knowledge soundness, we first combine the witness encryption scheme Constr. 1 and the garbled

circuit Constr. 2 and prove that no adversary given the ciphertexts of both and the input labels of the

garbled circuit can decrypt the message without knowing a valid witness for the relationR.

Lemma10. Let Encsetup, Encprove,Dec be the witness encryption schemeConstr. 1 and letGarble,Encode,Eval
be the garbled circuit Constr. 2. For all NP relationsR, for all PPT adversariesA, there exists a PPT extractor
E such that if

Pr


b = b′ :

crs← Groth16.Gen(R)
(𝕩,msg0,msg1)← A(crs)
b←$ {0, 1}
r ←$ 𝔽p
ctsetup ← Encsetup(crs,𝕩,msgb; r)
ctGC, ek← Garble(r)
π1 ← A(crs, ctsetup, ctGC)
L← Encode(ek, π1)
b′ ← A(ctsetup, ctGC, L)


=

1

2
+ ϵ

then

Pr [(𝕩,𝕨) ∈ R : 𝕨← E(crs,𝕩, ctsetup, ctGC, L)] ≥ ϵ− negl(λ)

Proof. We will prove this by reduction to Lem. 1.

Given the adversary A in the lemma statement, we construct an adversary A′
for the game in Def. 2

with respect to Constr. 1. That is, we want to show that

Pr

 b = b′′ :

crs← Gen(R′)
(𝕩,msg0,msg1)← A′(crs)
b←$ {0, 1}
ct← Enc(crs,𝕩,msgb)

b′′ ← A′′(1λ, 1|C|, crs, ct)

 =
1

2
+ ϵ′

for the relationR′
in Eq. (24) and ct = (ctsetup, ctprove) and C being the circuit in Constr. 2. Given crs, A′

runs A(crs) to get (𝕩,msg0,msg1) and outputs it (since Gen(R′) = Groth16.Gen(R) in Constr. 1). A′
is

41

given ct = (ctsetup, ctprove) where ctprove = rπ1. Let z = (crs, ctsetup) denote the auxiliary input where

inputs ofA consists of (ctGC, L, z) and inputs ofA′
consists of (ctprove, z). From Def. 3, there exists anA′′

such that ∣∣Pr[b = b′]− Pr[b = b′′]
∣∣ ≤ negl(λ)

This means that Pr[b = b′′] = 1
2 + ϵ′ where ϵ′ ⩾ ϵ− negl(λ).

From Lem. 1, there exists a PPT extractor E ′ such that

Pr[(𝕩,𝕨) ∈ R′ : 𝕨← E ′(crs,𝕩, aux)] ≥ ϵ′ − negl(λ)

where aux = (ctsetup, ctprove) is the auxiliary input ofA′′
that is also given to E ′. The required extractor E

uses ctGC, L and computes ctprove = rπ1 (by correctness of the garbled circuit; Def. 3, Thm. 5), then calls

E ′(crs,𝕩, (ctsetup, ctprove)) to get𝕨. Since E ′ succeeds with probability ϵ′ − negl(λ), E also succeeds with
probability ϵ− negl(λ).

Theorem 7. Assuming FBTC satisfies safety, uBTC-liveness, and (τ, s)-chain growth for s > uBTC , the
protocol in Algs. 1 and 2 with ∆2 > ∆1 + 2uBTC satisfies honest-setup knowledge soundness.

Proof. For a given NP relationR, let crs← Groth16.Gen(R) and let 𝕩, T ,S, stP , stV be generated as per

Alg. 1, where S = {txWithdraw} (see Alg. 3 line 4). Suppose the Verifier runs VProve as per Alg. 2. Suppose
that at some round r and some honest party H , txWithdraw = LrH [h].

For txWithdraw to be valid, its ancestors txAssert and txChallengeAssert must be in the ledger. Suppose

txAssert = LrH [h0]. Due to the timelock on input (1) of txWithdraw, txAssert must have been included at least

∆2 blocks earlier, i.e., h0 ⩽ h−∆2.

The Verifier, upon seeing txAssert ∈ LV [h0] at some round, called FBTC.WRITE(txChallengeAssert)
(Alg. 2 line 20). This transaction is valid because its transaction witness contains both parties’ signatures,

the Prover’s Lamport signature and the Verifier’s Lamport signature for the samemessageπ1 (Alg. 2 line 19).
This transaction is unstoppable because the adversary does not know ek or skV . Due to liveness, txChallengeAssert ∈
LV [: h1] where h1 ⩽ h0 + uBTC .

When h(LV) = h1+∆1, the Verifier callsFBTC.WRITE(txNoWithdraw) (Alg. 2 line 22). This transaction
is valid because its transaction witness contains the Prover’s pre-signature obtained during the setup and

the Verifier’s signature (Alg. 2 line 21), and the timelock ∆1 on its input (1) has expired.

Case 1: txNoWithdraw ∈ LH [: h2] for h2 = h1+∆1+uBTC ⩽ h+∆1+2uBTC −∆2. Since∆2 > ∆1+
2uBTC , h2 < h. This is a contradiction because if txNoWithdraw ∈ LH [: h2], and txNoWithdraw ∈ LH [: h],
then the ledger LH is invalid because both transactions contain a common input.

Case 2: txNoWithdraw /∈ LH [: h2] for h2 = h1 + ∆1 + uBTC . Due to liveness, this must mean that

txNoWithdraw is not uBTC-unstoppable with respect to the ledger LV [h1 + ∆1] and the adversary’s state

st = (crs,𝕩, T ,S, stP , aux) for some auxiliary input aux. In particular, the adversary must have created a

sequence of blocks such that txNoWithdraw is invalid when placed in one of the blocks. Since the timelock

∆1 has already expired, the adversary must have created a sequence of blocks containing a valid trans-

action tx′ which shares an input with txNoWithdraw. The adversary cannot create any other transaction

spending output (0) of txAssert (which is input (0) of txNoWithdraw) because i) given ∆2 > ∆1 + uBTC ,

the timelock ∆2 will not expire by height h1 + ∆1 + uBTC and ii) the adversary does not know skV
and so cannot produce a valid signature for any transaction other than txWithdraw. The adversary cannot

create any other transaction spending the output of txChallengeAssert (which is input (1) of txNoWithdraw)

42

through the leaf CheckSig(pkV) ∧ RelTimelock(∆1) because the adversary does not know skV . There-
fore, the adversary can stop txNoWithdraw only by spending the output of txChallengeAssert through the leaf

HashLock(HashBTC(msg))∧CheckSig(pkP). The transaction witness of such a transaction must contain

msg′ such that HashBTC(msg′) = HashBTC(msg). Since HashBTC is modeled as a random oracle, with

overwhelming probability, msg′ = msg.
Therefore, we have an adversary P ∗

who can, given crs, 𝕩, T , S , stP , Lπ1 , outputmsg and thus in the

pre-condition probability game of Lem. 10 outputs b′ = b with probability close to 1 (since msg′ = msg
with ovewhelming probability above). Subsequently, from Lem. 10, there exists an extractor E who has

the same view as P ∗
and can extract 𝕨 such that (𝕩,𝕨) ∈ R with probability close to 1.

Theorem 8. Assuming FBTC satisfies safety, uBTC-liveness, and (τ, s)-chain growth for s > uBTC , the
protocol in Algs. 1 and 2 with ∆1 > 2uBTC and ∆2 > ∆1 + 2uBTC satisfies honest-setup knowledge
soundness and honest-setup u-robustness where u = τ−1(∆2 + uBTC).

Proof. From Thm. 7 and Thm. 6.

8 Extensions and Optimizations

8.1 Multiple Verifiers and Provers

In this paper, we defined BitVM-core as a two-party protocol. The BitVM-core definition and the BABE

protocol can be easily extended to capture multiple Verifiers (as in BitVM2-core [LAA
+
25]) so that sound-

ness holds as long as at least one Verifier is honest. Similarly, BABE can support multiple Provers so that

the first Prover to generate a valid proof for his statement can withdraw the Bitcoin.

8.2 Optimistic Path

Leveraging techniques from BitVM2 [LAA
+
25], BABE can incorporate an optimistic path that bypasses

the full proving phase when the Verifier can independently confirm the statement. For instance, if the

statement is “Bob repaid his loan on Ethereum”, the Verifier can directly check the finalized repayment

transaction on the Ethereum blockchain. In such situations, neither a proof from the Prover nor the pub-

lication of input labels by the Verifier is necessary on Bitcoin, thus significantly reducing on-chain costs.

8.3 Compressed Groth16 Proof

In the protocol of Sec. 6.1.2, three Lamport signatures on π1 are posted on-chain: the Prover posts one in

txAssert, and the Verifier, in txChallengeAssert, posts both the Prover’s signature and their own. Each signature
covers 508 bits—254 bits each for the x and y coordinates of π1—for a total of 1,524 Lamport-signed bits

on-chain.

Posting both the x and y coordinates is redundant, as the y coordinate can be recovered from the x

coordinate and a sign bit using the elliptic curve equation y2 = x3 + 3 (mod p). However, computing

modular square roots is expensive in the garbled circuit. To address this and lower on-chain costs, the

protocol can require the Prover to Lamport sign only the x coordinate and sign bit, while the Verifier signs

the x coordinate, sign bit, and y coordinate. The garbled circuit then verifies that y2 = x3 + 3 (mod p)
(as in Constr. 2) and that y has the correct sign, revealing a secret if either check fails. With this approach,

Lamport signatures for a total of 1,019 bits are posted on chain: 2 × 255 bits for the x coordinate and

sign bit (signed by the Prover and repeated by the Verifier), and 509 bits for the x coordinate, sign bit, and

y coordinate signed by the Verifier. This decreases on-chain cost by 33% with negligible impact on the

off-chain cost.

43

9 Evaluation

9.1 Honest Setup

We begin with the metrics in Fig. 2 for the honest-setup protocol. We also justify the values used for

BitVM3 in Fig. 2.

On-chain cost. The BABE on-chain-cost in Fig. 2 is based on the dispute-path transactions Assert,
ChallengeAssert, andWronglyChallenged that are directly responsible for the on-chain proof verification.

using the vSizes reported in Tab. 1. We also apply the compressed proof optimization Sec. 8.3. This is

the basis for the $37.82 on-chain cost entry reported for BABE in Fig. 2. We estimate USD cost using

1 sat ≈ 0.000955 USD (i.e., 1 BTC ≈ 95,500 USD) and infer average feerates of 2.216 sat/vB from the

corresponding transaction flows.

Table 1: On-chain footprint for the honest-setup experiment in Fig. 2

Transaction Size (B) vSize (vB) Fees (USD)

Assert 17,720 4,533 9.85
ChallengeAssert 52,032 13,079 27.98
WronglyChallenged 312 149 0.29

The BitVM3 on-chain-cost entry in Fig. 2 is based on the corresponding dispute-path transactions

from a previously published BitVM3 on-chain experiment, normalized to the same fee rate as the BABE

experiment.

Off-chain runtime breakdown. The setup time (174.90ms) and decryption time (126.53ms) reported
for BABE in Fig. 2 are single-instance point estimates, according to our measurements. The detailed break-

down numbers below come from a representative run whose totals differ from these point estimates by at

most ≈ 1.5%. To justify where this time goes, we decompose the dominant off-chain paths into protocol

subroutines that correspond to steps in Algs. 1 and 2 and the constructions in Constr. 1 and Sec. 5.6.

On the setup path, the benchmark totals 177.398ms and is dominated by generation of the DRE-

selection tables used for the DRE encoding step in Sec. 5.6. (136.896ms, 77.17%).

The remaining setup components are the privacy-free Boolean gadget at 16.808ms (9.47%), that vali-

dates the curve point and derives the feature bits (Sec. 5.6). plus 18.029ms (10.16%) of garbling overhead

and 5.665ms (3.19%) of non-garbling work (WE setup, Lamport-key hashes, and message commitments).

On the decryption path, the benchmark totals 125.834ms and is dominated by evaluation of the gar-

bled circuit (Alg. 2 and Sec. 5.6). (111.538ms, 88.64%), plus 8.888ms (7.06%) of overhead from label

conversions/packing.

Off-chain storage (ciphertext size). The BABE storage entry in Fig. 2 is the serialized size of the per-

instance off-chain setup artifact that the Prover retains through the protocol (cf. Sec. 6): the witness-

encryption setup ciphertext ctsetup from Constr. 1, the garbled-circuit ciphertext ctGC from Constr. 2 (used

to derive ctprove), and the associated hashes/commitments referenced by the Bitcoin scripts. Using com-

pressed canonical serialization of the implementation artifact, this totals 22.16MiB, according to our cal-
culations.

The witness-encryption ciphertexts (ctsetup, ctprove) contribute 480B. The garbled-circuit ciphertext

ctGC dominates and splits into 6.35MiB for the Boolean-Yao gadgets that validate π1 and derive the feature

44

vector u(π1) (Sec. 5) and 15.77MiB for the DRE-selection tables implementing the DRE encoding (Def. 13

and Thm. 4); the remaining≈ 38KB are Lamport-key hashes and message commitments plus serialization

overhead.

The 15.77MiBDRE termmatches the sparsity-aware estimate: for n = 254 (Sec. 5), the DRE encoding

step stores

n
(
(3n+ 1) + (4n+ 1) + (n+ 1)

)
= n(8n+ 3) = 516,890

serialized field elements (Jacobian X,Y, Z with (3n + 1, 4n + 1, n + 1) field elements per bit). With

32-byte canonical serialization per field element, this is

516,890× 32 = 16,540,480 B ≈ 15.77MiB.

BitVM3 reference point (ciphertext size). The BitVM3 storage entry in Fig. 2 follows from the re-

ported 2.7 billion non-free gates [Bit25b]; using half-gates garbling and interpreting this count as half-

gates (one 16-byte ciphertext per non-free gate), this yields 2.7× 109 × 16B ≈ 41,200MiB.

9.2 Cut-and-Choose Setup Verification

We use cut-and-choose to verify setup correctness against a malicious setup generator. We refer to Algs. 4

and 5 and App. B for the protocol definition.

Off-chain setup cost. Tab. 2 reports setup cost between two protocol roles (Prover and Verifier) exe-

cuted on a single machine for different (NCC,MCC) choices; timings exclude network latency. We addi-

tionally report peak RAM usage and a breakdown of garbling and evaluation components.
16

Table 2: BABE cut-and-choose setup cost for different parameter choices.

NCC MCC Setup time Peak

RAM

usage

(GB)

Garbling

(s)

Evaluation

(s)

78 10 0:06 1.27 1.44 1.45
95 9 0:06 1.21 1.85 1.32
124 8 0:07 1.29 2.54 1.18
181 7 0:09 1.05 3.57 1.05
307 6 0:14 1.12 6.32 0.86
669 5 0:28 1.46 13.22 0.74

2,268 4 1:37 1.83 49.15 0.59
18,756 3 12:31 3.93 383.87 0.41

NCC: total cut-and-choose instances. MCC: finalized instances for evaluation. Setup time is wall-clock time for cut-and-choose

setup (timings exclude network latency). Setup time includes both Prover and Verifier computation. Garbling time is measured

on the garbler node for all NCC instances (not summed across both roles). Evaluation time is total decoding time for all finalized

instances using the on-chain input labels (Sec. 5.6). Peak RAM usage is the maximum RAM used during execution. Hardware:

CPU: AMD Ryzen 7 7840U(16 CPU);.

16

These components correspond to the generation and use of the full protocol ciphertexts: in each cut-and-choose instance the

Verifier produces the witness-encryption setup ciphertext ctsetup (Constr. 1) and the garbled-circuit ciphertext ctGC (Constr. 2);

the evaluation component measures the Prover’s evaluation of ctGC on the on-chain input labels (Sec. 5.6) to derive the proving

ciphertext ctprove (Sec. 6.1.2).

45

Parameter choices and statistical security. We choose the (NCC,MCC) pairs in Tab. 2 so that the

soundness error of the cut-and-choose setup

(
NCC
MCC

)−1
is at most 2−40

. In this step, the Verifier opens

NCC−MCC randomly chosen instances and retainsMCC unopened instances as finalized. Soundness can

fail only if all opened instances are correct while allMCC finalized instances are incorrect.

Comparison to BitVM3. As an open-sourced reference point for garbled-circuit-based Groth16 verifi-

cation, we additionally report cut-and-choose setup costs for BitVM3 [Bit25b]. To make the comparison

parameter-aligned, we use the same (NCC,MCC) pairs as in Tab. 2 and report setup time and the gar-

bling/evaluation breakdown. Other garbled-circuit-based approaches do not provide public implementa-

tions and benchmarks at comparable levels of detail. We use (NCC,MCC) = (181, 7) as the main operating

point for BitVM3, since the garbling time at this point is not very largewhile the on-chain footprint remains

acceptable. We discuss augmenting BitVM3 with zk-SNARK-soldering in Sec. 9.3.

Table 3: BitVM3 cut-and-choose setup cost for different parameter choices (same (NCC,MCC) grid as

Tab. 2).

NCC MCC Setup time Garbling Evaluation

78 10 1:28:54 0:44:27 0:03:45
95 9 1:47:58 0:53:59 0:03:45

124 8 2:19:06 1:09:33 0:03:45
181 7 3:24:24 1:42:12 0:03:45
307 6 5:43:24 2:51:42 0:03:45
669 5 12:23:06 6:11:33 0:03:45

2,268 4 41:02:00 20:31:00 0:03:45

Times are in h:mm:ss format. Garbling time is from [Bit25b]; setup time is estimated as twice the garbling time. Evaluation time

is expected to be negligible relative to garbling. Hardware: CPU: AMD Ryzen 7 7840U(16 CPU);.

Operating points. For BitVM3, we primarily use (NCC,MCC) = (181, 7); for BABE we use MCC = 4
in the end-to-end evaluation (cf. Tabs. 2 and 6).

On-chain implication. In our end-to-end on-chain evaluation we focus on MCC = 4. Cut-and-choose
only guarantees that at least one of the 4 instances is correct with high probability but the Prover doesn’t

know which one. Hence in the baseline, four sets of input labels must be posted on chain. This directly

drives the on-chain footprint and motivates soldering.

9.3 Soldering (zk-SNARK-soldering)

zk-SNARK-soldering is an optimization that reduces the number of distinct on-chain input-label sets from

MCC down to one, by binding finalized instances to a base instance and proving correctness of this binding

with a soldering zk-SNARK proof. Our prototype uses the SP1 zkVM as the proving backend, but the stack

is interchangeable and could be replaced by any zk-SNARK or zk-STARK system.

Soldering idea (informal). Let I denote the set of finalized instances and let b = min(I) be a base

instance. Let {Li,j,0, Li,j,1}508j=1 denote the garbler’s per-wire label pairs for instance i (2m is the number

of input bits). For each i ∈ I \ {b}, define the per-wire, per-bit deltas ∆i,j,β := Li,j,β ⊕ Lb,j,β for

β ∈ {0, 1}, j ∈ [508]. The soldering zk-SNARK proof attests that these deltas are consistent with the

46

Table 4: BitVM3 soldering overhead (1019 labels) as a function of the number of finalized instances.

MCC Soldering time (s)

5 1529.11
6 1740.24
7 1977.10

Soldering time is the time to generate a zk-SNARK proof attesting to the correctness of input-label bindings acrossMCC

finalized instances. Hardware: CPU: AMD Ryzen 7 7840U(16 CPU);.

Table 5: BABE soldering overhead (508 labels) as a function of the number of finalized instances.

MCC Soldering time (s)

4 745.50
5 865.59
6 969.37

Soldering time is the time to generate a zk-SNARK proof attesting to the correctness of input-label bindings acrossMCC

finalized instances. Hardware: CPU: AMD Ryzen 7 7840U(16 CPU);.

commitments fixed during cut-and-choose, enabling derivation of all finalized per-wire label pairs from

the base instance’s labels. Equivalently, the proof certifies that there exists a single collection of per-

wire label pairs for the base instance and for all other finalized instances, and that the deltas {∆i,j,β} are
exactly the XOR differences between these labels. This check is performed by verifying a single soldering

zk-SNARK proof, and any verification failure aborts the protocol.

Soldering reduces on-chain cost because only the base instance’s tag set is posted on-chain. All other

finalized instances’ per-wire label pairs can be derived off-chain from the base labels and the proven deltas

{∆i,j,β}, so the on-chain footprint no longer scales withMCC.

We focus on MCC = 4 because soldering introduces additional zk-SNARK proving time during setup.

In particular, approaches that treat each finalized instance separately lead to overhead that grows with

MCC. We therefore focus on theMCC = 4 operating point in the end-to-end evaluation, and useMCC = 5
only as a reference point when discussing scaling.

We report soldering times forMCC ∈ {5, 6, 7} (BitVM3) andMCC ∈ {4, 5, 6} (BABE) in Tabs. 4 and 5,

and compare the baseline and zk-SNARK-soldering configurations atMCC = 4 in Tab. 6.

BitVM3with zk-SNARK-soldering. We can also augment BitVM3with zk-SNARK-soldering to reduce

the on-chain input-label footprint fromMCC sets to one. The soldering overhead depends onMCC and the

number of input labels, but is independent of the specific garbled circuit; thus the BABE soldering times in

Tab. 5 serve as a lower bound, while the BitVM3 soldering times in Tab. 4 apply directly to BitVM3. Total

setup time for BitVM3 with zk-SNARK-soldering is the sum of the C&C setup time from Tab. 3 and the

corresponding soldering overhead.

Implementation. All reported measurements are obtained from our prototype implementation.

9.4 Verifiable Shamir Secret Sharing

C&C + VSSS (general idea). As a possible improvement over the C&C baseline, we consider com-

pressing the on-chain input-label footprint using verifiable Shamir secret sharing (VSSS), inspired by

Glock [Eag25] and the “efficient verifiable cut-and-choose” design notes [Lab25, BOB25b]. In the setup

47

Table 6: Off-chain timings at the operating pointMCC = 4.

Configuration Setup time

for Verifier

(s)

Evaluation

time (s)

C&C baseline 49.15 0.59
C&C + zk-SNARK-soldering 49.15 +

745.50s
0.59

phase, the Verifier secret-shares the Prover input labels across instances and publishes commitments to the

shares, while binding each instance to the committed values (e.g., via hashes and nonce commitments). In

the proving phase, the Prover interpolates from the committed shares to reconstruct the input labels for

the MCC finalized instances and proceeds as in the baseline. Conceptually, this targets the same bottle-

neck as zk-SNARK-soldering—reducing the number of distinct on-chain input-label sets from MCC down

to one—but replaces zk proving with interpolation and commitment checks.

BitVM3 baseline at (NCC,MCC) = (181, 7). We continue to use (NCC,MCC) = (181, 7) as the main

BitVM3 operating point (cf. Tab. 3). At this point, the reported BitVM3 setup time is 3:24:24 (with

garbling time 1:42:12).17 To isolate what VSSS adds, we report below the incremental VSSS overhead as

a function of (NCC,MCC).

VSSS overhead across parameter sets. Tab. 7 reports the incremental overhead of adding the VSSS

layer on top of cut-and-choose for different (NCC,MCC) choices.
These measurements come from a draft prototype intended to estimate the overhead under a mock-

on-chain design (no end-to-end transaction integration). At the smallest operating point (NCC,MCC) =
(78, 10), the measured setup-time overhead is 32.96 s. Considering that NCC garbling of BABE will take

less than a second, we can estimate that the setup time will be around 40 seconds.

Table 7: Incremental overhead of VSSS over cut-and-choose for different parameter choices (prototype

measurements).

NCC MCC Setup time overhead (s) Peak RAM (GB)

78 10 32.96 0.98
95 9 40.86 1.20
124 8 53.84 1.57
181 7 83.93 2.31
307 6 159.23 3.92
669 5 332.61 8.56

Measurements run the VSSS layer standalone with the corresponding (NCC,MCC) parameters and 508 input bits. Setup time

overhead is wall-clock time for setup between two roles (Prover and Verifier) executed on a single machine (timings exclude

network latency). Hardware: CPU: AMD Ryzen 7 7840U(16 CPU);.

On-chain integration note. An end-to-end on-chain integration for VSSS still requires a concrete

transaction design that ties the committed shares to the on-chain protocol logic (e.g., via adaptor signatures

17

See the caption of Tab. 3 for how setup time is estimated from garbling time.

48

(ad-sig) and nonce commitments). As a result, we do not yet report on-chain costs for VSSS. Nevertheless,

relative to prior BitVM3-centric experiments [BOB25b] we expect substantially lower on-chain footprint,

since BABE requires far fewer evaluator input labels than BitVM3.

Acknowledgements

We thank the Babylon Labs team members for performing the on-chain experiments and for designing the

illustrations. We thank Liam Eagen and Ying Tong Lai for early discussions about [EL26]. The work of first

and second authors is supported in part by the AFOSR Award FA9550-24-1-0156, and research grants from

the Bakar Fund, the Stellar Development Foundation, Supra Inc., and Byzantine Research Inc. The work of

the fifth author is partially supported by the Stanford Input-Output Global Research Hub. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of these institutes.

References

[AAL
+
24] Lukas Aumayr, Zeta Avarikioti, Robin Linus, Matteo Maffei, Andrea Pelosi, Christos Stefo, and

Alexei Zamyatin. BitVM: Quasi-turing complete computation on Bitcoin. Cryptology ePrint

Archive, Report 2024/1995, 2024. 4

[AFP25] Amit Agarwal, Rex Fernando, and Benny Pinkas. Efficiently-thresholdizable batched iden-

tity based encryption, with applications. In Yael Tauman Kalai and Seny F. Kamara, editors,

CRYPTO 2025, Part III, volume 16002 of LNCS, pages 69–100. Springer, Cham, August 2025. 8

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC
0
. In 45th FOCS,

pages 166–175. IEEE Computer Society Press, October 2004. 9

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with con-

stant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
440–456. Springer, Berlin, Heidelberg, May 2005. 11

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective hashing. In

Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS,
pages 339–369. Springer, Berlin, Heidelberg, December 2016. 8, 21

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof

composition from accumulation schemes. In Rafael Pass and Krzysztof Pietrzak, editors,

TCC 2020, Part II, volume 12551 of LNCS, pages 1–18. Springer, Cham, November 2020. 10

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable

one-way functions. In David B. Shmoys, editor, 46th ACM STOC, pages 505–514. ACM Press,

May / June 2014. 20

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge

via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer, Berlin, Heidelberg, August 2014. 10

[BFOQ25] Jan Bormet, Sebastian Faust, Hussien Othman, and Ziyan Qu. BEAT-MEV: Epochless approach

to batched threshold encryption for MEV prevention. In Lujo Bauer and Giancarlo Pellegrino,

editors, USENIX Security 2025, pages 3457–3476. USENIX Association, August 2025. 8

49

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applica-

tions to one-time programs and secure outsourcing. In XiaoyunWang and Kazue Sako, editors,

ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, Berlin, Heidelberg, December

2012. 15, 33

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting

Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796. ACM Press,

October 2012. 14

[Bit25a] Bitlayer. Bitvm bridge testnet | bitlayer. https://docs.bitlayer.org/docs/BitVMBridge/
Multi-Chain/testnet/, 2025. Last accessed: 2024-01-08’. 1

[Bit25b] BitVM. Garbled snark verifier. https://github.com/BitVM/garbled-snark-verifier, 2025. GitHub
repository. Last accessed: 2026-01-11. 5, 6, 45, 46

[BL20] Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive secure com-

putation. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 349–378. Springer, Cham, November 2020. 8

[BMM
+
21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for in-

ner pairing products and applications. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part III, volume 13092 of LNCS, pages 65–97. Springer, Cham, December 2021.

10

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.

In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319–331.
Springer, Berlin, Heidelberg, August 2006. 5

[BOB25a] BOB. Bob | bridge. https://app.gobob.xyz/en/bridge, 2025. Last accessed: 2024-01-08’. 1

[BOB25b] BOB. BOB lowers onchain costs for BitVM3 via cut-and-choose implementation to $10.91.

https://gobob.xyz/blog/bob-lowers-onchain-costs-for-bitvm3, December 2025. BOB Blog. Last

accessed: 2026-01-12. 47, 49

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Ken-

neth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer, Berlin,
Heidelberg, September 2008. 11

[BP15] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional auxiliary

input. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of

LNCS, pages 236–261. Springer, Berlin, Heidelberg, November / December 2015. 20

[Cat25] Catalyst. Bitcoin prism. https://github.com/catalystsystem/bitcoinprism-evm, 2025. GitHub

repository. Last accessed: 2026-01-14. 4

[CFH
+
22] Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh.

Succinct zero-knowledge batch proofs for set accumulators. In Heng Yin, Angelos Stavrou, Cas

Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 455–469. ACM Press, November 2022.

10

[CFK24] Matteo Campanelli, Dario Fiore, and Hamidreza Khoshakhlagh. Witness encryption for suc-

cinct functional commitments and applications. In Qiang Tang and Vanessa Teague, editors,

PKC 2024, Part II, volume 14602 of LNCS, pages 132–167. Springer, Cham, April 2024. 8

50

https://docs.bitlayer.org/docs/BitVMBridge/Multi-Chain/testnet/
https://docs.bitlayer.org/docs/BitVMBridge/Multi-Chain/testnet/
https://github.com/BitVM/garbled-snark-verifier
https://app.gobob.xyz/en/bridge
https://gobob.xyz/blog/bob-lowers-onchain-costs-for-bitvm3
https://github.com/catalystsystem/bitcoinprism-evm

[CGPW25] Arka Rai Choudhuri, Sanjam Garg, Guru-Vamsi Policharla, and Mingyuan Wang. Practical

mempool privacy via one-time setup batched threshold encryption. In Lujo Bauer andGiancarlo

Pellegrino, editors, USENIX Security 2025, pages 3477–3495. USENIX Association, August 2025.

8

[Che25] Weikeng Chen. SoK: BitVM with succinct on-chain cost. Cryptology ePrint Archive, Report

2025/1253, 2025. 5, 38

[Cit25] Citrea. Citrea bridge | citrea. https://citrea.xyz/bridge, 2025. Last accessed: 2024-01-08’. 1

[DLT
+
24] Xinshu Dong, Orfeas Stefanos Thyfronitis Litos, Ertem Nusret Tas, David Tse, Robin Linus

Woll, Lei Yang, and Mingchao Yu. Remote staking with economic safety. CoRR, abs/2408.01896,
2024. 5

[Dry17] Thaddeus Dryja. Discreet log contracts. https://static1.squarespace.com/static/
6675a0d5fc9e317c60db9b37/t/66e4597b7f23866561a64a95/1726241147904/discreet+log+
contracts+paper.pdf, 2017. Last accessed: 2026-01-12. 5

[Eag25] Liam Eagen. Glock: Garbled locks for Bitcoin. Cryptology ePrint Archive, Report 2025/1485,

2025. 5, 47

[EL26] Liam Eagen and Ying Tong Lai. Argo MAC: Garbling with elliptic curve MACs. Cryptology

ePrint Archive, Paper 2026/049, 2026. 1, 9, 22, 49

[FBFL25] Ariel Futoransky, Fadi Barbàra, Ramses Fernandez, and Gabriel Larotonda. OHMG: One hot

modular garbling. Cryptology ePrint Archive, Report 2025/2338, 2025. 6

[FHAS24] Nils Fleischhacker, Mathias Hall-Andersen, and Mark Simkin. Extractable witness encryption

for KZG commitments and efficient laconic OT. In Kai-Min Chung and Yu Sasaki, editors,

ASIACRYPT 2024, Part II, volume 15485 of LNCS, pages 423–453. Springer, Singapore, December

2024. 8

[FKdP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-

based encryption and key-value map commitments for large spaces. In Jian Guo and Ron

Steinfeld, editors, ASIACRYPT 2023, Part V, volume 14442 of LNCS, pages 166–200. Springer,
Singapore, December 2023. 8

[FKN94] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, STOC ’94, pages 554–563, New

York, NY, USA, 1994. ACM. 9, 28

[GGKS25] Sanjam Garg, Aarushi Goel, Dimitris Kolonelos, and Rohit Sinha. Jigsaw: Doubly private smart

contracts. Cryptology ePrint Archive, Report 2025/1147, 2025. 10

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs

and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Berlin, Heidelberg, May 2013.

12

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its ap-

plications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 467–476. ACM Press, June 2013. 6, 14

51

https://citrea.xyz/bridge
https://static1.squarespace.com/static/6675a0d5fc9e317c60db9b37/t/66e4597b7f23866561a64a95/1726241147904/discreet+log+contracts+paper.pdf
https://static1.squarespace.com/static/6675a0d5fc9e317c60db9b37/t/66e4597b7f23866561a64a95/1726241147904/discreet+log+contracts+paper.pdf
https://static1.squarespace.com/static/6675a0d5fc9e317c60db9b37/t/66e4597b7f23866561a64a95/1726241147904/discreet+log+contracts+paper.pdf

[GGW24] Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove statements obliviously? In

Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part X, volume 14929 of LNCS, pages
449–487. Springer, Cham, August 2024. 10

[GHK
+
25] SanjamGarg, MohammadHajiabadi, Dimitris Kolonelos, AbhiramKothapalli, and Guru-Vamsi

Policharla. A framework for witness encryption from linearly verifiable SNARKs and applica-

tions. In Yael Tauman Kalai and Seny F. Kamara, editors, CRYPTO 2025, Part III, volume 16002

of LNCS, pages 504–539. Springer, Cham, August 2025. 8, 21

[GIKM00] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private

information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629, 2000. 6

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Analysis

and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 281–310. Springer, Berlin, Heidelberg, April 2015. 15, 18

[GKP
+
13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai

Zeldovich. How to run Turing machines on encrypted data. In Ran Canetti and Juan A. Garay,

editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 536–553. Springer, Berlin, Heidelberg,
August 2013. 6, 13

[GKPW24] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. Threshold

encryption with silent setup. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part VII, volume 14926 of LNCS, pages 352–386. Springer, Cham, August 2024. 1, 8, 21

[GMN22] Nicolas Gailly, Mary Maller, and Anca Nitulescu. SnarkPack: Practical SNARK aggregation. In

Ittay Eyal and Juan A. Garay, editors, FC 2022, volume 13411 of LNCS, pages 203–229. Springer,
Cham, May 2022. 10

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and

Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Berlin, Heidelberg, May 2016. 5, 12, 13

[Her18] Maurice Herlihy. Atomic cross-chain swaps. arXiv preprint arXiv:1801.09515, 2018. Last ac-

cessed: 2026-01-12. 5

[Hio22] Leona Hioki. Trustless bitcoin bridge creation with witness encryption. https://ethresear.ch/
t/trustless-bitcoin-bridge-creation-with-witness-encryption/11953, February 2022. Ethereum

Research. Last accessed: 2026-01-11. 7

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with ap-

plications to round-efficient secure computation. In 41st FOCS, pages 294–304. IEEE Computer

Society Press, November 2000. 9

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect ran-

domizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno,

Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo, editors, ICALP 2002, volume 2380

of LNCS, pages 244–256. Springer, Berlin, Heidelberg, July 2002. 9

[Ish13] Yuval Ishai. Randomization techniques for secure computation. In Manoj Prabhakaran and

Amit Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology and Information
Security Series, pages 222–248. IOS Press, 2013. 9, 23, 27, 28

52

https://ethresear.ch/t/trustless-bitcoin-bridge-creation-with-witness-encryption/11953
https://ethresear.ch/t/trustless-bitcoin-bridge-creation-with-witness-encryption/11953

[IW14] Yuval Ishai and HoeteckWee. Partial garbling schemes and their applications. In Javier Esparza,

Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, ICALP 2014, Part I, volume

8572 of LNCS, pages 650–662. Springer, Berlin, Heidelberg, July 2014. 9

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and

applications. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,

Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS,
pages 486–498. Springer, Berlin, Heidelberg, July 2008. 5, 15

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge argu-

ments from folding schemes. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part IV, volume 13510 of LNCS, pages 359–388. Springer, Cham, August 2022. 10

[LAA
+
25] Robin Linus, Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Andrea Pelosi, Orfeas Thyfronitis

Litos, Christos Stefo, David Tse, and Alexei Zamyatin. Bridging Bitcoin to second layers via

BitVM2. Cryptology ePrint Archive, Report 2025/1158, 2025. To appear in Usenix Security 2026.

1, 4, 5, 6, 18, 43

[Lab25] Alpen Labs. Efficient verifiable cut and choose for glock. https://hackmd.io/@alpen/
B1QfSSO5gg, 2025. HackMD. Last accessed: 2026-01-12. 47

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report

SRI-CSL-98, SRI International Computer Science Laboratory, October 1979. 5, 15, 16

[Lin23] Robin Linus. Bitvm: Compute anything on bitcoin. https://bitvm.org/bitvm.pdf, December

2023. Last accessed: 2024-01-08’. 4

[Lin24] Robin Linus. Bitvm 3s - garbled circuits for efficient computation on bitcoin. https://bitvm.org/
bitvm3.pdf, 2024. Last accessed: 2024-01-08’. 1, 5

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in

the presence of malicious adversaries. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of

LNCS, pages 52–78. Springer, Berlin, Heidelberg, May 2007. 5

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party compu-

tation. Journal of Cryptology, 22(2):161–188, April 2009. 14, 33

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.

Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796 of

LNCS, pages 1–12. Springer, Berlin, Heidelberg, December 2005. 10, 11

[MLLP25] Varun Madathil, Arthur Lazzaretti, Zeyu Liu, and Charalampos Papamanthou. TACITA:

Threshold aggregationwithout client interaction. Cryptology ePrint Archive, Report 2025/1579,

2025. 8

[Nak09] Satoshi Nakamoto. Bitcoin open source implementation of p2p currency. https://satoshi.
nakamotoinstitute.org/posts/p2pfoundation/1/, 2009. Last accessed: 2024-01-08’. 4

[OKMZ25] Michele Orrù, George Kadianakis, Mary Maller, and Greg Zaverucha. Beyond the circuit: How

to minimize foreign arithmetic in ZKP circuits. CiC, 2(1):23, 2025. 10

[OWWB20] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. Scaling verifiable computa-

tion using efficient set accumulators. In Srdjan Capkun and Franziska Roesner, editors, USENIX
Security 2020, pages 2075–2092. USENIX Association, August 2020. 10

53

https://hackmd.io/@alpen/B1QfSSO5gg
https://hackmd.io/@alpen/B1QfSSO5gg
https://bitvm.org/bitvm.pdf
https://bitvm.org/bitvm3.pdf
https://bitvm.org/bitvm3.pdf
https://satoshi.nakamotoinstitute.org/posts/p2pfoundation/1/
https://satoshi.nakamotoinstitute.org/posts/p2pfoundation/1/

[PD16] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant

payments. https://lightning.network/lightning-network-paper.pdf, 2016. Last accessed: 2026-
01-12. 5

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical

verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE
Computer Society Press, May 2013. 12

[Rub24] Jeremy Rubin. Delbrag. https://rubin.io/public/pdfs/delbrag.pdf, 2024. Last accessed: 2024-01-
08’. 1, 5

[SGB24] István András Seres, Noemi Glaeser, and Joseph Bonneau. Short paper: Naysayer proofs. In

Jeremy Clark and Elaine Shi, editors, FC 2024, Part II, volume 14745 of LNCS, pages 22–32.

Springer, Cham, March 2024. 5

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,

editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Berlin, Heidelberg, May

1997. 10

[Wik20] Bitcoin Wiki. Atomic swap. https://en.bitcoin.it/wiki/Atomic_swap, 2020. Last accessed: 2026-
01-12. 5

[Wik21] Bitcoin Wiki. Hash time locked contracts. https://en.bitcoin.it/wiki/Hash_Time_Locked_
Contracts, 2021. Last accessed: 2026-01-12. 5

[WNT20] Pieter Wuille, Jonas Nick, and Anthony Towns. Bip 0341, taproot: Segwit version 1 spending

rules. https://en.bitcoin.it/wiki/BIP_0341, January 2020. Last accessed: 2024-01-08’. 15

[WOS
+
25] Anna P. Y. Woo, Alex Ozdemir, Chad Sharp, Thomas Pornin, and Paul Grubbs. Efficient proofs

of possession for legacy signatures. In Marina Blanton, William Enck, and Cristina Nita-Rotaru,

editors, 2025 IEEE Symposium on Security and Privacy, pages 3291–3308. IEEE Computer Society

Press, May 2025. 10

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164. IEEE Computer Society Press, November 1982. 5, 9, 14

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data

transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,

EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, Berlin, Heidelberg,
April 2015. 5, 15

A Honest-Setup BABE Protocol Details

A.1 Transactions

The detailed specifications of the transactions are given in this section. Each transaction specifies the

inputs, outputs, the locking scripts for each input and output, and the transaction witnesses.

Deposit Transaction

Inputs (0) (∗, ∗, ∗)
Outputs (0) (v, ⟨CheckSig(pkP) ∧ CheckSig(pkV)⟩)
Tx Witness (0) ∗

54

https://lightning.network/lightning-network-paper.pdf
https://rubin.io/public/pdfs/delbrag.pdf
https://en.bitcoin.it/wiki/Atomic_swap
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/BIP_0341

Assert Transaction

Inputs (0) (∗, ∗, ⟨CheckLampSig(lpkP)⟩) (see Eq. (15))
Outputs (0) (0, ⟨RelTimelock(∆2) ∧ CheckSig(pkP) ∧ CheckSig(pkV),CheckSig(pkP) ∧

CheckSig(pkV)⟩)
(1) (0, ⟨CheckLampSigsMatch(lpkP , lpkV)∧CheckSig(pkV)∧CheckSig(pkP)⟩) (see Eq. (16))

Tx Wit-
ness

(0) µ1, . . . , µℓ

ChallengeAssert Transaction

Inputs (0) (txAssert, 1, ⟨CheckLampSigsMatch(lpkP , lpkV)∧CheckSig(pkV)∧CheckSig(pkP)⟩) (see
Eq. (16))

Outputs (0) (0, ⟨RelTimelock(∆1) ∧ CheckSig(pkV),HashLock(HashBTC(msg)) ∧ CheckSig(pkP)⟩)
Tx Wit-
ness

(0) L1, . . . , Lℓ, µ1, . . . , µℓ, σV , σP

NoWithdraw Transaction

Inputs (0) (txAssert, 0,CheckSig(pkP) ∧ CheckSig(pkV))
(1) (txChallengeAssert, 0,RelTimelock(∆1) ∧ CheckSig(pkV))

Outputs (0) (0, ⟨CheckSig(pkV)⟩)
Tx Wit-
ness

(0) σP , σV

(1) σV

WronglyChallenged Transaction

Inputs (0) (txChallengeAssert, 0,HashLock(h
msg) ∧ CheckSig(pkP))

Outputs (0) (0, ⟨CheckSig(pkP)⟩)
Tx Wit-
ness

(0) σP ,msg

Withdraw Transaction

Inputs (0) (txDeposit, 0,CheckSig(pkP) ∧ CheckSig(pkV))
(1) (txAssert, 0,RelTimelock(∆2) ∧ CheckSig(pkP) ∧ CheckSig(pkV))

Outputs (0) (v, ⟨CheckSig(pkP)⟩)
Tx Wit-
ness

(0) σP , σV

(1) σP , σV

B Protocol for Malicious Security

The setup protocol using cut-and-choose, which achieves the BitVM-core properties in Defs. 9 to 11, is

shown in Algs. 4 and 5.

The corresponding proving phase is shown in Alg. 6.

55

Algorithm 4 Setup algorithms for malicious security (Prover)

1: procedure PSetup,mal(crs) ▷ Run by Prover

2: (skP , pkP)← SigBTC .Gen(1
λ) ▷ Sample signing key

3: send (pkP) to Verifier

Upon receiving

(
pkV ,

{
hmsg
i , epki, h

ctsetup
i

}NCC

i=1

)
from Verifier:

4: Sample I as a uniformly random subset of [NCC] of sizeMCC

5: send I to Verifier

Upon receiving

(
{msgi, ri, seedi}i∈[NCC]\I

, {ctsetupi, ctGCi, eki}i∈I

)
from Verifier:

6: 𝕩← GenStmt(pkP)
7: for i ∈ [NCC] \ I do ▷ If any verification fails, abort

8: VerifyWE.Encsetup(crs,𝕩,msgi, ri) = ctsetupi ▷ Constr. 1

9: Verify (ctGCi, eki) = Garble(ri; seedi) ▷ Sec. 5.6

10: Verify hmsg
i = HashBTC(msgi)

11: for j ∈ {1, . . . ,m}, b ∈ {0, 1} do
12: Verify ((epki)

b
j = HashBTC(eki)

b
j)

13: end for

14: Verify h
ctsetup
i = RO(ctsetupi)

15: end for

16: (lskP , lpkP)← LampSig.Gen(1λ) ▷ Sample Lamport key

17: (T ,S)← CreateTxSetMalicious
(
pkP , pkV , lpkP , {epki}i∈I , {hmsg

i }i∈I
)

▷ Alg. 7

18: presigsP ← SignTxsP (skP , T) ▷ Alg. 3

19: send (pkP , lpkP , presigsP) to Verifier

Upon receiving (presigsV) from Verifier:

20: VerifySigsP (pkV , T , presigsV) ▷ Alg. 3; if fails, abort

21: Sign txDeposit and submit to Bitcoin via FBTC.WRITE(txDeposit)
22: stP ← (skP , lskP , presigsV , {ctsetupi, ctGCi}i∈I)
23: return (𝕩, T ,S, stP)
24: end procedure

56

Algorithm 5 Setup algorithms for malicious security (Verifier)

1: procedure VSetup,mal(crs) ▷ Run by Verifier

Upon receiving (pkP) from Prover:

2: 𝕩← GenStmt(pkP) ▷ Application-specific: map Prover to statement

3: (skV , pkV)← SigBTC .Gen(1
λ) ▷ Sample signing key

4: for i = 1, . . . , NCC do ▷ Generate ciphertexts for cut-and-choose

5: msgi ←$M, ri ←$ 𝔽p ▷ Sample secrets

6: ctsetupi ←WE.Encsetup(crs,𝕩,msgi, ri) ▷WE ciphertext (Constr. 1)

7: seedi ←$ {0, 1}λ ▷ Seed for Garble
8: ctGCi, eki ← Garble(ri; seedi) ▷ GC ciphertext and encoding key (Sec. 5.6)

9: hmsg
i ← HashBTC(msgi) ▷ Hash message for hashlock

10: for j ∈ {1, . . . ,m}, b ∈ {0, 1} do
11: (epki)

b
j ← HashBTC((eki)

b
j) ▷ Hash input labels for hashlock

12: end for

13: h
ctsetup
i ← RO(ctsetupi)

14: end for

15: send

(
pkV ,

{
hmsg
i , epki, h

ctsetup
i

}NCC

i=1

)
to Prover

Upon receiving I from Prover:

16: send

(
{msgi, ri, seedi}i∈[NCC]\I

, {ctsetupi, ctGCi, eki}i∈I

)
to Prover

Upon receiving (pkP , lpkP , presigsP) from Prover:

17: VerifySigsV (pkP , T , presigsP) ▷ Alg. 3; if fails, abort

18: (T ,S)← CreateTxSetMalicious
(
pkP , pkV , lpkP , {epki}i∈I , {hmsg

i }i∈I
)

▷ Alg. 7

19: presigsV ← SignTxsV (skV , T) ▷ Alg. 3

20: stV ← (skV , {eki}i∈I , presigsP)
21: send (presigsV) to Prover

22: return (𝕩, T ,S, stV)
23: end procedure

57

Algorithm 6 Prove algorithms

1: procedure PProve,mal(crs,𝕩, T ,S, stP , w) ▷ Run by Prover

2: Parse stP = (skP , lskP , presigsV , {ctsetupi, ctGCi}MCC
i=1) and presigsV = (σV

Assert, σ
V
Withdraw)

3: (π1, π2, π3)← Groth16.Prove(crs,𝕩, w)
4: wAssert ← LampSig.Sign(lskP , π1) ▷ Compute Lamport signature

5: Post txAssert with transaction witness wAssert: call FBTC.WRITE(txAssert)

Upon seeing txAssert and∆2 new blocks after txAssert in LP :

6: wWithdraw ← (σP
Withdraw, σ

V
Withdraw) where σ

P
Withdraw ← SigBTC .Sign(skP , txWithdraw)

7: Post txWithdraw with transaction witness wWithdraw: call FBTC.WRITE(txWithdraw)
8: return 1

Upon seeing txChallengeAssert in LP :

9: Extract input labels {Li}MCC
i=1 from the transaction witness of txChallengeAssert

10: For i = 1, . . . ,MCC: ctprovei ← EvalGC(ctGCi, Li) ▷ Evaluate garbled circuits (Sec. 5.6)

11: For i = 1, . . . ,MCC: msgi ←WE.Dec(ctsetupi, ctprovei, π2, π3) ▷ Decrypt secrets (Constr. 1)

12: Find i such that wWronglyChallenged ← (σP
WronglyChallenged,msgi) where σP

WronglyChallenged ←
SigBTC .Sign(skP , txWronglyChallenged) is a valid transaction witness

13: Post txWronglyChallenged with transaction witness wWronglyChallenged: call FBTC.WRITE(txWronglyChallenged)
14: end procedure

15: procedure VProve,mal(crs,𝕩, T ,S, stV) ▷ Run by Verifier

Upon seeing txAssert in LV :

16: Parse stV = (skV , {eki}MCC
i=1 , presigsP) and presigsP = (σP

ChallengeAssert, σ
P
NoWithdraw)

17: Extract π1 and Lamport signature µ from the transaction witness of txAssert
18: For i = 1, . . . ,MCC: Li ← Encode(eki, π1) ▷ Compute input labels (Sec. 5.6)

19: wChallengeAssert ← (σP
ChallengeAssert, σ

V
ChallengeAssert, µ, {Li}MCC

i=1) where σV
ChallengeAssert ← SigBTC .Sign(skV , txChallengeAssert)

20: Post txChallengeAssert with transaction witness wChallengeAssert: call FBTC.WRITE(txChallengeAssert)

Upon seeing txChallengeAssert and∆1 new blocks after txChallengeAssert in LV :

21: wNoWithdraw ← (σP
NoWithdraw, σ

V
NoWithdraw) where σ

V
NoWithdraw ← SigBTC .Sign(skV , skP , txNoWithdraw)

22: Post txNoWithdraw with transaction witness wNoWithdraw: call FBTC.WRITE(txNoWithdraw)
23: return 1
24: end procedure

Algorithm 7 Locking scripts for the protocol with malicious security (Algs. 4 and 5)

1: function CreateTxSetMalicious(pkP , pkV , lpkP , {h
msg
i , epki}

MCC
i=1)

2: Define scripts:

ChallengeAssertScript :=
∧2m

j=1

[(∧MCC
i=1 HashLock((epki)

0
j) ∧ HashLock(lpk0j)

)
3: ∨

(∧MCC
i=1 HashLock((epki)

1
j) ∧ HashLock(lpk1j)

)]
▷ Replaces CheckLampSigsMatch in Alg. 3

WronglyChallengedScript :=
∨MCC

i=1 (HashLock(hmsg
i)) ▷ Replaces HashLock(hmsg) in Alg. 3

4: Construct transaction skeletons txDeposit, txAssert, txChallengeAssert, txNoWithdraw, txWronglyChallenged, txWithdraw as in Sec. 6.1.3

5: T := {txDeposit, txAssert, txChallengeAssert, txNoWithdraw, txWronglyChallenged, txWithdraw}
6: S := {txWithdraw}
7: return (T ,S)
8: end function

58

	Introduction
	Motivating Example
	Verifying Proofs on Bitcoin
	BitVM and BitVM2
	BitVM3

	New Verification Protocol: BABE
	Witness Encryption
	Witness encryption for linear pairings
	Garbled Circuit for Scalar Multiplication

	Other Applications

	Preliminaries
	Basic Notation
	Bilinear Groups
	Generic Bilinear Group Model

	Succinct Non-Interactive Arguments of Knowledge (SNARKs)
	The Groth16 SNARK

	Extractable Witness Encryption
	Garbling Schemes
	The Bitcoin Ledger

	The BitVM-core Primitive
	Witness Encryption for Linear Pairing Relation
	Garbled Circuit for BN254 Scalar Multiplication
	Overview
	Elliptic Curve Addition and Notation
	Decomposable Randomized Encodings: Definitions and Preliminaries
	Decomposable Randomized Encodings Constructions
	DRE for the Scalar Multiplication
	Completing the Garbled Circuit

	BABE Protocol
	Honest Setup Protocol
	Setup Phase
	Proving Phase
	Transaction Graph

	Verifying Setup Correctness

	Security Proof
	Security Proof Assuming Honest Setup
	Proof of Honest-Setup u-Robustness
	Proof of Honest-Setup Knowledge Soundness

	Extensions and Optimizations
	Multiple Verifiers and Provers
	Optimistic Path
	Compressed Groth16 Proof

	Evaluation
	Honest Setup
	Cut-and-Choose Setup Verification
	Soldering (zk-SNARK-soldering)
	Verifiable Shamir Secret Sharing

	Honest-Setup BABE Protocol Details
	Transactions

	Protocol for Malicious Security

